Pytania otagowane jako exponential

Rozkład opisujący czas między zdarzeniami w procesie Poissona; ciągły analog rozkładu geometrycznego.

3
Jakie są zalety wykładniczego generatora losowego wykorzystującego metodę Ahrensa i Dietera (1972) zamiast transformacji odwrotnej?
Moje pytanie jest inspirowane wbudowanym generatorem wykładniczej liczby losowej R. , funkcją rexp(). Podczas próby generowania wykładniczych liczb losowych rozkładanych wykładniczo wiele podręczników zaleca metodę transformacji odwrotnej opisaną na tej stronie Wikipedii . Wiem, że istnieją inne metody realizacji tego zadania. W szczególności kod źródłowy R korzysta z algorytmu przedstawionego …

2
Kolejność statystyk (np. Minimum) nieskończonej kolekcji zmiennych chi-kwadrat?
To jest mój pierwszy raz tutaj, więc proszę dać mi znać, czy mogę wyjaśnić moje pytanie w jakikolwiek sposób (w tym formatowanie, tagi itp.). (Mam nadzieję, że mogę później edytować!) Próbowałem znaleźć referencje i próbowałem rozwiązać siebie za pomocą indukcji, ale nie udało mi się obu. Próbuję uprościć dystrybucję, która …

1
R / mgcv: Dlaczego produkty tensorowe te () i ti () wytwarzają różne powierzchnie?
mgcvOpakowanie Rposiada dwie funkcje montowania interakcji produktów napinacz: te()i ti(). Rozumiem podstawowy podział pracy między nimi (dopasowanie interakcji nieliniowej vs. rozkładanie tej interakcji na główne efekty i interakcję). To, czego nie rozumiem, to dlaczego te(x1, x2)i ti(x1) + ti(x2) + ti(x1, x2)może powodować (nieznacznie) różne wyniki. MWE (dostosowany z ?ti): …
11 r  gam  mgcv  conditional-probability  mixed-model  references  bayesian  estimation  conditional-probability  machine-learning  optimization  gradient-descent  r  hypothesis-testing  wilcoxon-mann-whitney  time-series  bayesian  inference  change-point  time-series  anova  repeated-measures  statistical-significance  bayesian  contingency-tables  regression  prediction  quantiles  classification  auc  k-means  scikit-learn  regression  spatial  circular-statistics  t-test  effect-size  cohens-d  r  cross-validation  feature-selection  caret  machine-learning  modeling  python  optimization  frequentist  correlation  sample-size  normalization  group-differences  heteroscedasticity  independence  generalized-least-squares  lme4-nlme  references  mcmc  metropolis-hastings  optimization  r  logistic  feature-selection  separation  clustering  k-means  normal-distribution  gaussian-mixture  kullback-leibler  java  spark-mllib  data-visualization  categorical-data  barplot  hypothesis-testing  statistical-significance  chi-squared  type-i-and-ii-errors  pca  scikit-learn  conditional-expectation  statistical-significance  meta-analysis  intuition  r  time-series  multivariate-analysis  garch  machine-learning  classification  data-mining  missing-data  cart  regression  cross-validation  matrix-decomposition  categorical-data  repeated-measures  chi-squared  assumptions  contingency-tables  prediction  binary-data  trend  test-for-trend  matrix-inverse  anova  categorical-data  regression-coefficients  standard-error  r  distributions  exponential  interarrival-time  copula  log-likelihood  time-series  forecasting  prediction-interval  mean  standard-error  meta-analysis  meta-regression  network-meta-analysis  systematic-review  normal-distribution  multiple-regression  generalized-linear-model  poisson-distribution  poisson-regression  r  sas  cohens-kappa 

3
Średnia odwrotnego rozkładu wykładniczego
Biorąc pod uwagę zmienną losową , jaka jest średnia i wariancja G = 1Y= Ex p ( λ )Y=Exp(λ)Y = Exp(\lambda) ?G = 1YG=1YG=\dfrac{1}{Y} Patrzę na odwrotny rozkład gamma, ale średnia i wariancja są zdefiniowane tylko odpowiednio dla i α > 2 ...α > 1α>1\alpha>1α > 2α>2\alpha>2

1
Czy MLE z
Załóżmy, że ma plik pdf(X,Y)(X,Y)(X,Y) fθ(x,y)=e−(x/θ+θy)1x>0,y>0,θ>0fθ(x,y)=e−(x/θ+θy)1x>0,y>0,θ>0f_{\theta}(x,y)=e^{-(x/\theta+\theta y)}\mathbf1_{x>0,y>0}\quad,\,\theta>0 Gęstość próbki pobranej z tej populacji jest zatem(X,Y)=(Xi,Yi)1≤i≤n(X,Y)=(Xi,Yi)1≤i≤n(\mathbf X,\mathbf Y)=(X_i,Y_i)_{1\le i\le n} gθ(x,y)=∏i=1nfθ(xi,yi)=exp[−∑i=1n(xiθ+θyi)]1x1,…,xn,y1,…,yn>0=exp[−nx¯θ−θny¯]1x(1),y(1)>0,θ>0gθ(x,y)=∏i=1nfθ(xi,yi)=exp⁡[−∑i=1n(xiθ+θyi)]1x1,…,xn,y1,…,yn>0=exp⁡[−nx¯θ−θny¯]1x(1),y(1)>0,θ>0\begin{align} g_{\theta}(\mathbf x,\mathbf y)&=\prod_{i=1}^n f_{\theta}(x_i,y_i) \\&=\exp\left[{-\sum_{i=1}^n\left(\frac{x_i}{\theta}+\theta y_i\right)}\right]\mathbf1_{x_1,\ldots,x_n,y_1,\ldots,y_n>0} \\&=\exp\left[-\frac{n\bar x}{\theta}-\theta n\bar y\right]\mathbf1_{x_{(1)},y_{(1)}>0}\quad,\,\theta>0 \end{align} Estymator największego prawdopodobieństwa można uzyskać jakoθθ\theta θ^(X,Y)=X¯¯¯¯Y¯¯¯¯−−−√θ^(X,Y)=X¯Y¯\hat\theta(\mathbf X,\mathbf Y)=\sqrt\frac{\overline X}{\overline Y} Chcę wiedzieć, czy ograniczenie tego MLE jest normalne, …

1
Jaki jest rozkład proporcji odstępu i próbki?
Niech będą próbką iid wykładniczych zmiennych losowych ze średnią , i niech będą statystykami porządkowymi z tej próbki. Niech .X1,…,XnX1,…,XnX_1,\dots,X_nββ\betaX(1),…,X(n)X(1),…,X(n)X_{(1)},\dots,X_{(n)}X¯=1n∑ni=1XiX¯=1n∑i=1nXi\bar X = \frac{1}{n}\sum_{i=1}^n X_i Zdefiniuj odstępyMożna wykazać, że każdy jest również wykładniczy, ze średnią .W i β i = βWi=X(i+1)−X(i) ∀ 1≤i≤n−1.Wi=X(i+1)−X(i) ∀ 1≤i≤n−1.W_i=X_{(i+1)}-X_{(i)}\ \forall\ 1 \leq i \leq n-1\,. …

1
Estymator największej wiarygodności dla minimalnych rozkładów wykładniczych
Utknąłem, jak rozwiązać ten problem. Mamy więc dwie sekwencje zmiennych losowych, i dla . Teraz i są niezależnymi rozkładami wykładniczymi o parametrach i . Jednak zamiast obserwacji i , a nie obserwuje i .XiXiX_iYiYiY_ii=1,...,ni=1,...,ni=1,...,nXXXYYYλλ\lambdaμμ\muXXXYYYZZZWWW Z=min(Xi,Yi)Z=min(Xi,Yi)Z=\min(X_i,Y_i) i W=1W=1W=1 jeśli Zi=XiZi=XiZ_i=X_i i 0, jeśli Zi=YiZi=YiZ_i=Y_i . I znaleźć Zamknięty formy dla estymatorów …

2
Jak porównać średnią z dwóch próbek, których dane pasują do rozkładów wykładniczych
Mam dwie próbki danych, próbkę wyjściową i próbkę do leczenia. Hipoteza jest taka, że ​​próbka do leczenia ma wyższą średnią niż próbka wyjściowa. Obie próbki mają kształt wykładniczy. Ponieważ dane są dość duże, mam tylko średnią i liczbę elementów dla każdej próbki w momencie, w którym będę przeprowadzał test. Jak …

1
Korekta dla normalnie rozłożonej precyzji zegara
Mam eksperyment przeprowadzany na setkach komputerów rozmieszczonych na całym świecie, który mierzy występowanie niektórych zdarzeń. Zdarzenia zależą od siebie, więc mogę uporządkować je w kolejności rosnącej, a następnie obliczyć różnicę czasu. Zdarzenia powinny być rozkładane wykładniczo, ale podczas rysowania histogramu otrzymuję to: Niedokładność zegarów na komputerach powoduje, że niektórym zdarzeniom …

1
Który model głębokiego uczenia może klasyfikować kategorie, które nie wykluczają się wzajemnie
Przykłady: w opisie stanowiska mam zdanie: „Starszy inżynier Java w Wielkiej Brytanii”. Chcę użyć modelu głębokiego uczenia się, aby przewidzieć go jako 2 kategorie: English i IT jobs. Jeśli użyję tradycyjnego modelu klasyfikacji, może on przewidzieć tylko 1 etykietę z softmaxfunkcją na ostatniej warstwie. Dlatego mogę użyć 2 modelowych sieci …
9 machine-learning  deep-learning  natural-language  tensorflow  sampling  distance  non-independent  application  regression  machine-learning  logistic  mixed-model  control-group  crossover  r  multivariate-analysis  ecology  procrustes-analysis  vegan  regression  hypothesis-testing  interpretation  chi-squared  bootstrap  r  bioinformatics  bayesian  exponential  beta-distribution  bernoulli-distribution  conjugate-prior  distributions  bayesian  prior  beta-distribution  covariance  naive-bayes  smoothing  laplace-smoothing  distributions  data-visualization  regression  probit  penalized  estimation  unbiased-estimator  fisher-information  unbalanced-classes  bayesian  model-selection  aic  multiple-regression  cross-validation  regression-coefficients  nonlinear-regression  standardization  naive-bayes  trend  machine-learning  clustering  unsupervised-learning  wilcoxon-mann-whitney  z-score  econometrics  generalized-moments  method-of-moments  machine-learning  conv-neural-network  image-processing  ocr  machine-learning  neural-networks  conv-neural-network  tensorflow  r  logistic  scoring-rules  probability  self-study  pdf  cdf  classification  svm  resampling  forecasting  rms  volatility-forecasting  diebold-mariano  neural-networks  prediction-interval  uncertainty 

1
Niższy niż oczekiwano zasięg ważnego próbkowania z symulacją
Starałem się odpowiedzieć na pytanie Ocenić integralny z Znaczenie metody pobierania próbek na badania . Zasadniczo użytkownik musi obliczyć ∫π0fa( x ) dx =∫π01sałata( x)2)+x2)rex∫0πf(x)dx=∫0π1cos⁡(x)2+x2dx\int_{0}^{\pi}f(x)dx=\int_{0}^{\pi}\frac{1}{\cos(x)^2+x^2}dx wykorzystanie rozkładu wykładniczego jako rozkładu ważności q( x ) = λ exp- λ xq(x)=λ exp−λxq(x)=\lambda\ \exp^{-\lambda x} i znajdź wartość λλ\lambdaco daje lepsze przybliżenie całki …

1
Jak obliczyć funkcję prawdopodobieństwa
Żywotność 3 elementów elektronicznych wynosi a . Zmienne losowe modelowano jako losową próbkę wielkości 3 z rozkładu wykładniczego z parametrem . Funkcja prawdopodobieństwa wynosi dlaX1= 3 ,X2)= 1,5 ,X1=3),X2)=1.5,X_{1} = 3, X_{2} = 1.5,X3)= 2,1X3)=2.1X_{3} = 2.1θθ\thetaθ > 0θ>0\theta > 0 fa3)( x | θ ) =θ3)e x p ( …

1
Jak porównać obserwowane i oczekiwane zdarzenia?
Załóżmy, że mam jedną próbkę częstotliwości 4 możliwych zdarzeń: Event1 - 5 E2 - 1 E3 - 0 E4 - 12 i mam spodziewane prawdopodobieństwo wystąpienia moich zdarzeń: p1 - 0.2 p2 - 0.1 p3 - 0.1 p4 - 0.6 Dzięki sumie obserwowanych częstotliwości moich czterech zdarzeń (18) mogę obliczyć …
9 r  statistical-significance  chi-squared  multivariate-analysis  exponential  joint-distribution  statistical-significance  self-study  standard-deviation  probability  normal-distribution  spss  interpretation  assumptions  cox-model  reporting  cox-model  statistical-significance  reliability  method-comparison  classification  boosting  ensemble  adaboost  confidence-interval  cross-validation  prediction  prediction-interval  regression  machine-learning  svm  regularization  regression  sampling  survey  probit  matlab  feature-selection  information-theory  mutual-information  time-series  forecasting  simulation  classification  boosting  ensemble  adaboost  normal-distribution  multivariate-analysis  covariance  gini  clustering  text-mining  distance-functions  information-retrieval  similarities  regression  logistic  stata  group-differences  r  anova  confidence-interval  repeated-measures  r  logistic  lme4-nlme  inference  fiducial  kalman-filter  classification  discriminant-analysis  linear-algebra  computing  statistical-significance  time-series  panel-data  missing-data  uncertainty  probability  multivariate-analysis  r  classification  spss  k-means  discriminant-analysis  poisson-distribution  average  r  random-forest  importance  probability  conditional-probability  distributions  standard-deviation  time-series  machine-learning  online  forecasting  r  pca  dataset  data-visualization  bayes  distributions  mathematical-statistics  degrees-of-freedom 

2
Oblicz krzywą ROC dla danych
Mam więc 16 prób, w których próbuję uwierzytelnić osobę z cechy biometrycznej za pomocą Hamminga. Mój próg jest ustawiony na 3,5. Moje dane są poniżej i tylko próba 1 jest prawdziwie pozytywna: Trial Hamming Distance 1 0.34 2 0.37 3 0.34 4 0.29 5 0.55 6 0.47 7 0.47 8 …
9 mathematical-statistics  roc  classification  cross-validation  pac-learning  r  anova  survival  hazard  machine-learning  data-mining  hypothesis-testing  regression  random-variable  non-independent  normal-distribution  approximation  central-limit-theorem  interpolation  splines  distributions  kernel-smoothing  r  data-visualization  ggplot2  distributions  binomial  random-variable  poisson-distribution  simulation  kalman-filter  regression  lasso  regularization  lme4-nlme  model-selection  aic  r  mcmc  dlm  particle-filter  r  panel-data  multilevel-analysis  model-selection  entropy  graphical-model  r  distributions  quantiles  qq-plot  svm  matlab  regression  lasso  regularization  entropy  inference  r  distributions  dataset  algorithms  matrix-decomposition  regression  modeling  interaction  regularization  expected-value  exponential  gamma-distribution  mcmc  gibbs  probability  self-study  normality-assumption  naive-bayes  bayes-optimal-classifier  standard-deviation  classification  optimization  control-chart  engineering-statistics  regression  lasso  regularization  regression  references  lasso  regularization  elastic-net  r  distributions  aggregation  clustering  algorithms  regression  correlation  modeling  distributions  time-series  standard-deviation  goodness-of-fit  hypothesis-testing  statistical-significance  sample  binary-data  estimation  random-variable  interpolation  distributions  probability  chi-squared  predictor  outliers  regression  modeling  interaction 
Korzystając z naszej strony potwierdzasz, że przeczytałeś(-aś) i rozumiesz nasze zasady używania plików cookie i zasady ochrony prywatności.
Licensed under cc by-sa 3.0 with attribution required.