Pytania otagowane jako neural-networks

Sztuczne sieci neuronowe (ANN) to szeroka klasa modeli obliczeniowych luźno opartych na biologicznych sieciach neuronowych. Obejmują one wyprzedzające NN (w tym „głębokie” NN), splotowe NN, nawracające NN itp.

3
Jak sklasyfikować niezrównoważony zestaw danych według Convolutional Neural Networks (CNN)?
Mam niezrównoważony zestaw danych w zadaniu klasyfikacji binarnej, w którym liczba dodatnia vs. liczba ujemna wynosi 0,3% w porównaniu z 99,7%. Różnica między pozytywami a negatywami jest ogromna. Kiedy trenuję CNN ze strukturą stosowaną w problemie MNIST, wynik testu pokazuje wysoką fałszywą ujemną częstość. Ponadto krzywa błędu treningu szybko spada …

4
Model historii zdarzeń dyskretnych (przeżycie) w R.
Próbuję dopasować model czasu dyskretnego do R, ale nie jestem pewien, jak to zrobić. Czytałem, że możesz zorganizować zmienną zależną w różnych wierszach, po jednym dla każdej obserwacji czasu, i użyć glmfunkcji z łączem logit lub cloglog. W tym sensie, mam trzy kolumny: ID, Event(1 lub 0, w każdym okresie …
10 r  survival  pca  sas  matlab  neural-networks  r  logistic  spatial  spatial-interaction-model  r  time-series  econometrics  var  statistical-significance  t-test  cross-validation  sample-size  r  regression  optimization  least-squares  constrained-regression  nonparametric  ordinal-data  wilcoxon-signed-rank  references  neural-networks  jags  bugs  hierarchical-bayesian  gaussian-mixture  r  regression  svm  predictive-models  libsvm  scikit-learn  probability  self-study  stata  sample-size  spss  wilcoxon-mann-whitney  survey  ordinal-data  likert  group-differences  r  regression  anova  mathematical-statistics  normal-distribution  random-generation  truncation  repeated-measures  variance  variability  distributions  random-generation  uniform  regression  r  generalized-linear-model  goodness-of-fit  data-visualization  r  time-series  arima  autoregressive  confidence-interval  r  time-series  arima  autocorrelation  seasonality  hypothesis-testing  bayesian  frequentist  uninformative-prior  correlation  matlab  cross-correlation 

1
R regresja liniowa zmienna kategorialna „ukryta” wartość
To tylko przykład, na który natknąłem się kilka razy, więc nie mam żadnych przykładowych danych. Uruchamianie modelu regresji liniowej w R: a.lm = lm(Y ~ x1 + x2) x1jest zmienną ciągłą. x2jest kategoryczny i ma trzy wartości, np. „Niska”, „Średnia” i „Wysoka”. Jednak dane wyjściowe podane przez R byłyby mniej …
10 r  regression  categorical-data  regression-coefficients  categorical-encoding  machine-learning  random-forest  anova  spss  r  self-study  bootstrap  monte-carlo  r  multiple-regression  partitioning  neural-networks  normalization  machine-learning  svm  kernel-trick  self-study  survival  cox-model  repeated-measures  survey  likert  correlation  variance  sampling  meta-analysis  anova  independence  sample  assumptions  bayesian  covariance  r  regression  time-series  mathematical-statistics  graphical-model  machine-learning  linear-model  kernel-trick  linear-algebra  self-study  moments  function  correlation  spss  probability  confidence-interval  sampling  mean  population  r  generalized-linear-model  prediction  offset  data-visualization  clustering  sas  cart  binning  sas  logistic  causality  regression  self-study  standard-error  r  distributions  r  regression  time-series  multiple-regression  python  chi-squared  independence  sample  clustering  data-mining  rapidminer  probability  stochastic-processes  clustering  binary-data  dimensionality-reduction  svd  correspondence-analysis  data-visualization  excel  c#  hypothesis-testing  econometrics  survey  rating  composite  regression  least-squares  mcmc  markov-process  kullback-leibler  convergence  predictive-models  r  regression  anova  confidence-interval  survival  cox-model  hazard  normal-distribution  autoregressive  mixed-model  r  mixed-model  sas  hypothesis-testing  mediation  interaction 

1
Dlaczego informacje o danych walidacyjnych wyciekają, jeśli oceniam wydajność modelu na danych walidacyjnych podczas strojenia hiperparametrów?
W głębokim nauczaniu François Cholleta w Pythonie napisano: W rezultacie dostrajanie konfiguracji modelu w oparciu o jego wydajność w zestawie sprawdzania poprawności może szybko doprowadzić do nadmiernego dopasowania do zestawu sprawdzania poprawności, nawet jeśli Twój model nigdy nie jest bezpośrednio na nim szkolony. Centralnym elementem tego zjawiska jest pojęcie wycieków …


1
Moja sieć neuronowa nie może nawet nauczyć się odległości euklidesowej
Próbuję więc nauczyć się sieci neuronowych (do zastosowań regresji, nie klasyfikując zdjęć kotów). Moje pierwsze eksperymenty polegały na uczeniu sieci implementacji filtra FIR i dyskretnej transformaty Fouriera (trening sygnałów „przed” i „po”), ponieważ są to operacje liniowe, które mogą być realizowane przez pojedynczą warstwę bez funkcji aktywacji. Oba działały dobrze. …

2
Gdzie znaleźć wstępnie wyszkolone modele do nauki transferu [zamknięte]
Zamknięte . To pytanie musi być bardziej skoncentrowane . Obecnie nie przyjmuje odpowiedzi. Chcesz poprawić to pytanie? Zaktualizuj pytanie, aby skupiało się tylko na jednym problemie, edytując ten post . Zamknięte 2 lata temu . Jestem nowy w dziedzinie uczenia maszynowego, ale chciałem spróbować wdrożyć prosty algorytm klasyfikacji za pomocą …

1
Który model głębokiego uczenia może klasyfikować kategorie, które nie wykluczają się wzajemnie
Przykłady: w opisie stanowiska mam zdanie: „Starszy inżynier Java w Wielkiej Brytanii”. Chcę użyć modelu głębokiego uczenia się, aby przewidzieć go jako 2 kategorie: English i IT jobs. Jeśli użyję tradycyjnego modelu klasyfikacji, może on przewidzieć tylko 1 etykietę z softmaxfunkcją na ostatniej warstwie. Dlatego mogę użyć 2 modelowych sieci …
9 machine-learning  deep-learning  natural-language  tensorflow  sampling  distance  non-independent  application  regression  machine-learning  logistic  mixed-model  control-group  crossover  r  multivariate-analysis  ecology  procrustes-analysis  vegan  regression  hypothesis-testing  interpretation  chi-squared  bootstrap  r  bioinformatics  bayesian  exponential  beta-distribution  bernoulli-distribution  conjugate-prior  distributions  bayesian  prior  beta-distribution  covariance  naive-bayes  smoothing  laplace-smoothing  distributions  data-visualization  regression  probit  penalized  estimation  unbiased-estimator  fisher-information  unbalanced-classes  bayesian  model-selection  aic  multiple-regression  cross-validation  regression-coefficients  nonlinear-regression  standardization  naive-bayes  trend  machine-learning  clustering  unsupervised-learning  wilcoxon-mann-whitney  z-score  econometrics  generalized-moments  method-of-moments  machine-learning  conv-neural-network  image-processing  ocr  machine-learning  neural-networks  conv-neural-network  tensorflow  r  logistic  scoring-rules  probability  self-study  pdf  cdf  classification  svm  resampling  forecasting  rms  volatility-forecasting  diebold-mariano  neural-networks  prediction-interval  uncertainty 

4
Jak interpretować krzywą przeżycia modelu zagrożenia Coxa?
Jak interpretujesz krzywą przeżycia z proporcjonalnego modelu hazardu Coxa? W tym przykładzie zabawki załóżmy, że mamy proporcjonalny model hazardu Coxa dla agezmiennej w kidneydanych i generujemy krzywą przeżycia. library(survival) fit <- coxph(Surv(time, status)~age, data=kidney) plot(conf.int="none", survfit(fit)) grid() Na przykład o czasie 200200200, które stwierdzenie jest prawdziwe? czy oba są w …

4
Trening sieci neuronowej pod kątem regresji zawsze przewiduje średnią
Trenuję prostą sieć neuronową splotową do regresji, której zadaniem jest przewidzenie (x, y) położenia ramki na obrazie, np .: Dane wyjściowe sieci mają dwa węzły, jeden dla x i jeden dla y. Reszta sieci jest standardową splotową siecią neuronową. Strata jest standardowym średnim kwadratowym błędem między przewidywaną pozycją pudełka a …

1
Zrozumienie topologii LSTM
Tak jak wielu innych, znalazłem tu i tutaj zasoby niezwykle przydatne do zrozumienia komórek LSTM. Jestem pewien, że rozumiem, w jaki sposób wartości płyną i są aktualizowane, i jestem wystarczająco pewny, aby dodać wspomniane „połączenia z wizjerami” itp. W moim przykładzie za każdym razem mam wektor wejściowy długości ii wektor …

1
Gradienty dla słowa skipgram 2
Przechodzę przez problemy w pisemnych problemach z klasą głębokiego uczenia się NLP Stanforda http://cs224d.stanford.edu/assignment1/assignment1_soln Próbuję zrozumieć odpowiedź dla 3a, gdzie szukają pochodnej wektora dla środkowego słowa. Załóżmy, że otrzymałeś przewidywany wektor słowa odpowiadający środkowemu słowu c dla skipgramu, a przewidywania słów dokonuje się za pomocą funkcji softmax występującej w modelach …

3
Jak zastosować Softmax jako funkcję aktywacji w wielowarstwowym Perceptronie w scikit-learn? [Zamknięte]
Zamknięte. To pytanie jest nie na temat . Obecnie nie przyjmuje odpowiedzi. Chcesz poprawić to pytanie? Zaktualizuj pytanie, aby było tematem dotyczącym weryfikacji krzyżowej. Zamknięte 11 miesięcy temu . Muszę zastosować funkcję aktywacji Softmax na wielowarstwowym Perceptronie w scikit. Scikit documantation na temat modeli sieci neuronowych (nadzorowane) mówi „MLPClassifier obsługuje …

1
Jak efektywne jest Q-learning z sieciami neuronowymi, gdy na działanie przypada jedna jednostka wyjściowa?
Tło: Używam aproksymacji wartości Q sieci neuronowej w moim zadaniu uczenia się zbrojenia. Podejście jest dokładnie takie samo, jak opisane w tym pytaniu , jednak samo pytanie jest inne. W tym podejściu liczba wyników jest liczbą działań, które możemy podjąć. W prostych słowach algorytm jest następujący: wykonaj akcję A, zbadaj …

1
Czy sieci neuronowe używają wydajnego kodowania?
Moje pytanie dotyczy związku między hipotezą efektywnego kodowania, która została opisana na stronie Wikipedii dotyczącej wydajnego kodowania i algorytmów uczenia sieci neuronowej. Jaki jest związek między efektywną hipotezą kodowania a sieciami neuronowymi? Czy są jakieś modele sieci neuronowych wyraźnie zainspirowane hipotezą wydajnego kodowania? Czy może bardziej sprawiedliwym byłoby stwierdzenie, że …

Korzystając z naszej strony potwierdzasz, że przeczytałeś(-aś) i rozumiesz nasze zasady używania plików cookie i zasady ochrony prywatności.
Licensed under cc by-sa 3.0 with attribution required.