Pytania otagowane jako panel-data

Dane panelowe odnoszą się do danych wielowymiarowych, często obejmujących pomiary w czasie w ekonometrii. W biostatystyce nazywane są również danymi podłużnymi.

5
Jak dokładnie „model efektów losowych” w ekonometrii odnosi się do modeli mieszanych poza ekonometrią?
Kiedyś myślałem, że „model efektów losowych” w ekonometrii odpowiada „modelowi mieszanemu z przypadkowym przechwytywaniem” poza ekonometrią, ale teraz nie jestem pewien. Czy to? Ekonometria używa terminów takich jak „efekty stałe” i „efekty losowe” nieco inaczej niż w literaturze na temat modeli mieszanych, co powoduje notoryczne zamieszanie. Rozważmy prostą sytuację, w …


4
Standardowe grupowanie błędów w R (ręcznie lub w trybie plm)
Próbuję zrozumieć standardowy błąd „klastrowanie” i sposób wykonania w języku R (w Stacie jest to trywialne). W RI nie udało mi się ani użyć ani plmnapisać własnej funkcji. Użyję diamondsdanych z ggplot2paczki. Potrafię robić stałe efekty z dowolnymi zmiennymi obojętnymi > library(plyr) > library(ggplot2) > library(lmtest) > library(sandwich) > # …

1
Jak interpretować wariancję i korelację efektów losowych w modelu efektów mieszanych?
Mam nadzieję, że wszystkim wam to nie przeszkadza, ale potrzebuję pomocy w interpretacji wyników dla liniowego modelu efektów mieszanych, o których starałem się nauczyć w R. Jestem nowy w analizie danych podłużnych i regresji liniowych efektów mieszanych. Mam model, który dopasowałem do tygodni jako predyktor czasu, a moim wynikiem jest …

1
Czy stopnie swobody mogą być liczbą niecałkowitą?
Kiedy korzystam z GAM, daje mi resztkowy DF (ostatni wiersz kodu). Co to znaczy? Wychodząc poza przykład GAM, ogólnie, czy liczba stopni swobody może być liczbą niecałkowitą?26.626.626.6 > library(gam) > summary(gam(mpg~lo(wt),data=mtcars)) Call: gam(formula = mpg ~ lo(wt), data = mtcars) Deviance Residuals: Min 1Q Median 3Q Max -4.1470 -1.6217 -0.8971 …
27 r  degrees-of-freedom  gam  machine-learning  pca  lasso  probability  self-study  bootstrap  expected-value  regression  machine-learning  linear-model  probability  simulation  random-generation  machine-learning  distributions  svm  libsvm  classification  pca  multivariate-analysis  feature-selection  archaeology  r  regression  dataset  simulation  r  regression  time-series  forecasting  predictive-models  r  mean  sem  lavaan  machine-learning  regularization  regression  conv-neural-network  convolution  classification  deep-learning  conv-neural-network  regression  categorical-data  econometrics  r  confirmatory-factor  scale-invariance  self-study  unbiased-estimator  mse  regression  residuals  sampling  random-variable  sample  probability  random-variable  convergence  r  survival  weibull  references  autocorrelation  hypothesis-testing  distributions  correlation  regression  statistical-significance  regression-coefficients  univariate  categorical-data  chi-squared  regression  machine-learning  multiple-regression  categorical-data  linear-model  pca  factor-analysis  factor-rotation  classification  scikit-learn  logistic  p-value  regression  panel-data  multilevel-analysis  variance  bootstrap  bias  probability  r  distributions  interquartile  time-series  hypothesis-testing  normal-distribution  normality-assumption  kurtosis  arima  panel-data  stata  clustered-standard-errors  machine-learning  optimization  lasso  multivariate-analysis  ancova  machine-learning  cross-validation 

1
Jaka jest dopuszczalna wartość kryterium Calinski & Harabasz (CH)?
Przeprowadziłem analizę danych, próbując zgrupować dane podłużne przy użyciu R i pakietu kml . Moje dane zawierają około 400 indywidualnych trajektorii (jak to się nazywa w artykule). Możesz zobaczyć moje wyniki na poniższym obrazku: Po przeczytaniu rozdziału 2.2 „Wybór optymalnej liczby klastrów” w odpowiednim artykule nie otrzymałem żadnych odpowiedzi. Wolałbym …

4
Jak rzutować nowy wektor na przestrzeń PCA?
Po przeprowadzeniu analizy głównego składnika (PCA) chcę rzutować nowy wektor na przestrzeń PCA (tzn. Znaleźć jego współrzędne w układzie współrzędnych PCA). Mam obliczony PCA w języku R użyciu prcomp. Teraz powinienem być w stanie pomnożyć mój wektor przez macierz obrotu PCA. Czy główne elementy tej macierzy powinny być ułożone w …
21 r  pca  r  variance  heteroscedasticity  misspecification  distributions  time-series  data-visualization  modeling  histogram  kolmogorov-smirnov  negative-binomial  likelihood-ratio  econometrics  panel-data  categorical-data  scales  survey  distributions  pdf  histogram  correlation  algorithms  r  gpu  parallel-computing  approximation  mean  median  references  sample-size  normality-assumption  central-limit-theorem  rule-of-thumb  confidence-interval  estimation  mixed-model  psychometrics  random-effects-model  hypothesis-testing  sample-size  dataset  large-data  regression  standard-deviation  variance  approximation  hypothesis-testing  variance  central-limit-theorem  kernel-trick  kernel-smoothing  error  sampling  hypothesis-testing  normality-assumption  philosophical  confidence-interval  modeling  model-selection  experiment-design  hypothesis-testing  statistical-significance  power  asymptotics  information-retrieval  anova  multiple-comparisons  ancova  classification  clustering  factor-analysis  psychometrics  r  sampling  expectation-maximization  markov-process  r  data-visualization  correlation  regression  statistical-significance  degrees-of-freedom  experiment-design  r  regression  curve-fitting  change-point  loess  machine-learning  classification  self-study  monte-carlo  markov-process  references  mathematical-statistics  data-visualization  python  cart  boosting  regression  classification  robust  cart  survey  binomial  psychometrics  likert  psychology  asymptotics  multinomial 

1
Czy splajny mogą być używane do przewidywania?
Nie mogę sprecyzować charakteru danych, ponieważ są one zastrzeżone, ale załóżmy, że mamy takie dane: Każdego miesiąca niektóre osoby zapisują się na usługi. Następnie w każdym kolejnym miesiącu osoby te mogą uaktualnić usługę, przerwać usługę lub odmówić usługi (np. Z powodu braku zapłaty). Dla najwcześniejszej kohorty w naszych danych mamy …

2
Określanie modelu różnic w różnicach z wieloma przedziałami czasowymi
Gdy oszacuję model różnic w dwóch przedziałach czasowych, model regresji równoważnej byłby następujący za. Yist=α+γs∗Treatment+λdt+δ∗(Treatment∗dt)+ϵistYist=α+γs∗Treatment+λdt+δ∗(Treatment∗dt)+ϵistY_{ist} = \alpha +\gamma_s*Treatment + \lambda d_t + \delta*(Treatment*d_t)+ \epsilon_{ist} gdzie jest manekinem równym 1, jeśli obserwacja pochodzi z grupy poddanej leczeniuTreatmentTreatmentTreatment i jest obojętne, które jest równe 1, w okresie czasu po leczeniu doszłoddd Zatem …

1
Czy autokorelowane wzorce resztkowe pozostają nawet w modelach z odpowiednimi strukturami korelacji i jak wybrać najlepsze modele?
Kontekst To pytanie używa R, ale dotyczy ogólnych problemów statystycznych. Analizuję wpływ czynników umieralności (% umieralności z powodu chorób i pasożytnictwa) na tempo wzrostu populacji ćmy w czasie, gdy populacje larw pobierano z 12 miejsc raz w roku przez 8 lat. Dane dotyczące tempa wzrostu populacji pokazują wyraźny, ale nieregularny …

5
Jakie są różnice między terminami „analiza szeregów czasowych” i „analiza danych podłużnych”
Mówiąc o danych podłużnych, możemy odnosić się do danych zebranych w czasie wielokrotnie od tego samego przedmiotu / jednostki badawczej, dlatego istnieją korelacje dla obserwacji w obrębie tego samego przedmiotu, tj. Podobieństwo wewnątrz podmiotu. Mówiąc o danych szeregów czasowych, odnosimy się również do danych zebranych w szeregu czasowym i wydaje …

1
Jak analizować dane dotyczące liczby podłużnej: rozliczanie czasowej autokorelacji w GLMM?
Witaj guru statystyczni i kreatorzy programowania R, Interesuje mnie modelowanie chwytów zwierząt jako funkcji warunków środowiskowych i dnia w roku. W ramach innego badania mam liczbę przechwyceń przez ~ 160 dni w ciągu trzech lat. Na każdy z tych dni mam temperaturę, opady, prędkość wiatru, wilgotność względną itp. Ponieważ dane …

4
Dokładność maszyny zwiększającej gradient zmniejsza się wraz ze wzrostem liczby iteracji
Eksperymentuję z algorytmem maszyny do zwiększania gradientu za pośrednictwem caretpakietu w R. Korzystając z małego zestawu danych o przyjęciach na studia, uruchomiłem następujący kod: library(caret) ### Load admissions dataset. ### mydata <- read.csv("http://www.ats.ucla.edu/stat/data/binary.csv") ### Create yes/no levels for admission. ### mydata$admit_factor[mydata$admit==0] <- "no" mydata$admit_factor[mydata$admit==1] <- "yes" ### Gradient boosting machine …
15 machine-learning  caret  boosting  gbm  hypothesis-testing  t-test  panel-data  psychometrics  intraclass-correlation  generalized-linear-model  categorical-data  binomial  model  intercept  causality  cross-correlation  distributions  ranks  p-value  z-test  sign-test  time-series  references  terminology  cross-correlation  definition  probability  distributions  beta-distribution  inverse-gamma  missing-data  paired-comparisons  paired-data  clustered-standard-errors  cluster-sample  time-series  arima  logistic  binary-data  odds-ratio  medicine  hypothesis-testing  wilcoxon-mann-whitney  unsupervised-learning  hierarchical-clustering  neural-networks  train  clustering  k-means  regression  ordinal-data  change-scores  machine-learning  experiment-design  roc  precision-recall  auc  stata  multilevel-analysis  regression  fitting  nonlinear  jmp  r  data-visualization  gam  gamm4  r  lme4-nlme  many-categories  regression  causality  instrumental-variables  endogeneity  controlling-for-a-variable 

1
Jaka intuicja kryje się za wymiennymi próbkami pod hipotezą zerową?
Testy permutacyjne (zwane również testem randomizacji, testem ponownej randomizacji lub testem dokładnym) są bardzo przydatne i przydają się, gdy t-testnie jest spełnione założenie o rozkładzie normalnym wymagane na przykład i gdy transformacja wartości przez ranking test nieparametryczny, Mann-Whitney-U-testktóry prowadziłby do utraty większej ilości informacji. Jednak nie należy zapominać o jednym …
15 hypothesis-testing  permutation-test  exchangeability  r  statistical-significance  loess  data-visualization  normal-distribution  pdf  ggplot2  kernel-smoothing  probability  self-study  expected-value  normal-distribution  prior  correlation  time-series  regression  heteroscedasticity  estimation  estimators  fisher-information  data-visualization  repeated-measures  binary-data  panel-data  mathematical-statistics  coefficient-of-variation  normal-distribution  order-statistics  regression  machine-learning  one-class  probability  estimators  forecasting  prediction  validation  finance  measurement-error  variance  mean  spatial  monte-carlo  data-visualization  boxplot  sampling  uniform  chi-squared  goodness-of-fit  probability  mixture  theory  gaussian-mixture  regression  statistical-significance  p-value  bootstrap  regression  multicollinearity  correlation  r  poisson-distribution  survival  regression  categorical-data  ordinal-data  ordered-logit  regression  interaction  time-series  machine-learning  forecasting  cross-validation  binomial  multiple-comparisons  simulation  false-discovery-rate  r  clustering  frequency  wilcoxon-mann-whitney  wilcoxon-signed-rank  r  svm  t-test  missing-data  excel  r  numerical-integration  r  random-variable  lme4-nlme  mixed-model  weighted-regression  power-law  errors-in-variables  machine-learning  classification  entropy  information-theory  mutual-information 


Korzystając z naszej strony potwierdzasz, że przeczytałeś(-aś) i rozumiesz nasze zasady używania plików cookie i zasady ochrony prywatności.
Licensed under cc by-sa 3.0 with attribution required.