Pytania otagowane jako change-point

Metody, które próbują wykryć zmianę w dystrybucji, procesie lub funkcji.

3
Interpretacja predyktora i / lub odpowiedzi transformowanej logarytmicznie
Zastanawiam się, czy ma to znaczenie w interpretacji, czy transformowane są tylko zmienne zależne, zależne i niezależne, czy tylko zmienne niezależne. Rozważ przypadek log(DV) = Intercept + B1*IV + Error Mogę interpretować IV jako wzrost procentowy, ale jak to się zmienia, kiedy mam log(DV) = Intercept + B1*log(IV) + Error …
46 regression  data-transformation  interpretation  regression-coefficients  logarithm  r  dataset  stata  hypothesis-testing  contingency-tables  hypothesis-testing  statistical-significance  standard-deviation  unbiased-estimator  t-distribution  r  functional-data-analysis  maximum-likelihood  bootstrap  regression  change-point  regression  sas  hypothesis-testing  bayesian  randomness  predictive-models  nonparametric  terminology  parametric  correlation  effect-size  loess  mean  pdf  quantile-function  bioinformatics  regression  terminology  r-squared  pdf  maximum  multivariate-analysis  references  data-visualization  r  pca  r  mixed-model  lme4-nlme  distributions  probability  bayesian  prior  anova  chi-squared  binomial  generalized-linear-model  anova  repeated-measures  t-test  post-hoc  clustering  variance  probability  hypothesis-testing  references  binomial  profile-likelihood  self-study  excel  data-transformation  skewness  distributions  statistical-significance  econometrics  spatial  r  regression  anova  spss  linear-model 

1
Wykrywanie anomalii linków w sieci czasowej
Natknąłem się na ten artykuł, który wykorzystuje wykrywanie anomalii linków do przewidywania trendów, i uważam, że jest to niezwykle intrygujące: artykuł „Odkrywanie pojawiających się tematów w strumieniach społecznościowych poprzez wykrywanie anomalii linków” . Chciałbym powielić go na innym zestawie danych, ale nie znam wystarczająco metod, aby wiedzieć, jak z nich …

5
Moduł Pythona do analizy punktu zmiany
Szukam modułu Python, który wykonuje analizę zmiany punktu na szeregu czasowym. Istnieje wiele różnych algorytmów i chciałbym zbadać skuteczność niektórych z nich bez konieczności ręcznego rzucania każdym z algorytmów. Idealnie chciałbym, aby niektóre moduły, takie jak bcp (Bayesian Change Point) lub pakiety strucchange w R. Spodziewałem się znaleźć kilka w …

4
Jak rzutować nowy wektor na przestrzeń PCA?
Po przeprowadzeniu analizy głównego składnika (PCA) chcę rzutować nowy wektor na przestrzeń PCA (tzn. Znaleźć jego współrzędne w układzie współrzędnych PCA). Mam obliczony PCA w języku R użyciu prcomp. Teraz powinienem być w stanie pomnożyć mój wektor przez macierz obrotu PCA. Czy główne elementy tej macierzy powinny być ułożone w …
21 r  pca  r  variance  heteroscedasticity  misspecification  distributions  time-series  data-visualization  modeling  histogram  kolmogorov-smirnov  negative-binomial  likelihood-ratio  econometrics  panel-data  categorical-data  scales  survey  distributions  pdf  histogram  correlation  algorithms  r  gpu  parallel-computing  approximation  mean  median  references  sample-size  normality-assumption  central-limit-theorem  rule-of-thumb  confidence-interval  estimation  mixed-model  psychometrics  random-effects-model  hypothesis-testing  sample-size  dataset  large-data  regression  standard-deviation  variance  approximation  hypothesis-testing  variance  central-limit-theorem  kernel-trick  kernel-smoothing  error  sampling  hypothesis-testing  normality-assumption  philosophical  confidence-interval  modeling  model-selection  experiment-design  hypothesis-testing  statistical-significance  power  asymptotics  information-retrieval  anova  multiple-comparisons  ancova  classification  clustering  factor-analysis  psychometrics  r  sampling  expectation-maximization  markov-process  r  data-visualization  correlation  regression  statistical-significance  degrees-of-freedom  experiment-design  r  regression  curve-fitting  change-point  loess  machine-learning  classification  self-study  monte-carlo  markov-process  references  mathematical-statistics  data-visualization  python  cart  boosting  regression  classification  robust  cart  survey  binomial  psychometrics  likert  psychology  asymptotics  multinomial 

5
Wykrywanie zmian w szeregach czasowych (przykład R)
Chciałbym wykryć zmiany w danych szeregów czasowych, które zwykle mają ten sam kształt. Do tej pory pracowałem z changepointpakietem dla R cpt.mean(), cpt.var()oraz cpt.meanvar()funkcji i . cpt.mean()z metodą PELT działa dobrze, gdy dane zwykle pozostają na jednym poziomie. Chciałbym jednak również wykryć zmiany podczas zjazdów. Przykładem zmiany, którą chciałbym wykryć, …

2
Analiza punktu zmiany za pomocą R's nls ()
Próbuję zaimplementować analizę „punktu zmiany” lub regresję wielofazową nls()w R. Oto kilka fałszywych danych, które stworzyłem . Formuła, której chcę użyć do dopasowania danych, to: y= β0+ β1x + β2)max ( 0 , x - δ)y=β0+β1x+β2)max(0,x-δ)y = \beta_0 + \beta_1x + \beta_2\max(0,x-\delta) Powinno to polegać na dopasowaniu danych do określonego …

6
Jak wykryć znaczącą zmianę danych szeregów czasowych z powodu zmiany „zasad”?
Mam nadzieję, że jest to właściwe miejsce do opublikowania tego. Rozważyłem opublikowanie go sceptykom, ale sądzę, że po prostu powiedzieliby, że badanie było statystycznie nieprawidłowe. Jestem ciekaw drugiej strony pytania, jak to zrobić dobrze. Na stronie internetowej Quantified Self autor opublikował wyniki eksperymentu pewnej miary wydajności mierzonej na sobie w …


4
Szacowanie punktu przerwania w złamanym drążku / częściowym modelu liniowym z losowymi efektami w R [zawiera kod i dane wyjściowe]
Czy ktoś może mi powiedzieć, jak R oszacować punkt przerwania w częściowym modelu liniowym (jako parametr stały lub losowy), gdy muszę również oszacować inne efekty losowe? Poniżej zamieściłem przykład zabawki, który pasuje do regresji kija hokejowego / łamanego kija z losowymi wariancjami nachylenia i losową wariancją przechwytywania y dla punktu …


6
Jak scharakteryzować nagłą zmianę?
To pytanie może być zbyt proste. Jeśli chodzi o tymczasowy trend danych, chciałbym dowiedzieć się, w którym momencie następuje „nagła” zmiana. Na przykład na pierwszym rysunku pokazanym poniżej chciałbym znaleźć punkt zmiany za pomocą metody statystycznej. I chciałbym zastosować taką metodę w niektórych innych danych, których punkt zmiany nie jest …


2
Wykryj zmiany w szeregach czasowych
Natknąłem się na zdjęcie prototypu aplikacji, który znajduje znaczące zmiany („trendy” - nie wzrosty / wartości odstające) w danych o ruchu: Chcę napisać program (Java, opcjonalnie R), który jest w stanie zrobić to samo - ale ponieważ moje umiejętności statystyczne są nieco zardzewiałe, muszę ponownie zagłębić się w ten temat. …

1
R / mgcv: Dlaczego produkty tensorowe te () i ti () wytwarzają różne powierzchnie?
mgcvOpakowanie Rposiada dwie funkcje montowania interakcji produktów napinacz: te()i ti(). Rozumiem podstawowy podział pracy między nimi (dopasowanie interakcji nieliniowej vs. rozkładanie tej interakcji na główne efekty i interakcję). To, czego nie rozumiem, to dlaczego te(x1, x2)i ti(x1) + ti(x2) + ti(x1, x2)może powodować (nieznacznie) różne wyniki. MWE (dostosowany z ?ti): …
11 r  gam  mgcv  conditional-probability  mixed-model  references  bayesian  estimation  conditional-probability  machine-learning  optimization  gradient-descent  r  hypothesis-testing  wilcoxon-mann-whitney  time-series  bayesian  inference  change-point  time-series  anova  repeated-measures  statistical-significance  bayesian  contingency-tables  regression  prediction  quantiles  classification  auc  k-means  scikit-learn  regression  spatial  circular-statistics  t-test  effect-size  cohens-d  r  cross-validation  feature-selection  caret  machine-learning  modeling  python  optimization  frequentist  correlation  sample-size  normalization  group-differences  heteroscedasticity  independence  generalized-least-squares  lme4-nlme  references  mcmc  metropolis-hastings  optimization  r  logistic  feature-selection  separation  clustering  k-means  normal-distribution  gaussian-mixture  kullback-leibler  java  spark-mllib  data-visualization  categorical-data  barplot  hypothesis-testing  statistical-significance  chi-squared  type-i-and-ii-errors  pca  scikit-learn  conditional-expectation  statistical-significance  meta-analysis  intuition  r  time-series  multivariate-analysis  garch  machine-learning  classification  data-mining  missing-data  cart  regression  cross-validation  matrix-decomposition  categorical-data  repeated-measures  chi-squared  assumptions  contingency-tables  prediction  binary-data  trend  test-for-trend  matrix-inverse  anova  categorical-data  regression-coefficients  standard-error  r  distributions  exponential  interarrival-time  copula  log-likelihood  time-series  forecasting  prediction-interval  mean  standard-error  meta-analysis  meta-regression  network-meta-analysis  systematic-review  normal-distribution  multiple-regression  generalized-linear-model  poisson-distribution  poisson-regression  r  sas  cohens-kappa 

1
Dlaczego Anova () i drop1 () podają różne odpowiedzi dla GLMM?
Mam GLMM w postaci: lmer(present? ~ factor1 + factor2 + continuous + factor1*continuous + (1 | factor3), family=binomial) Kiedy używam drop1(model, test="Chi"), otrzymuję inne wyniki niż w przypadku korzystania Anova(model, type="III")z pakietu samochodowego lub summary(model). Te dwa ostatnie dają te same odpowiedzi. Korzystając z wielu sfabrykowanych danych, odkryłem, że te …
10 r  anova  glmm  r  mixed-model  bootstrap  sample-size  cross-validation  roc  auc  sampling  stratification  random-allocation  logistic  stata  interpretation  proportion  r  regression  multiple-regression  linear-model  lm  r  cross-validation  cart  rpart  logistic  generalized-linear-model  econometrics  experiment-design  causality  instrumental-variables  random-allocation  predictive-models  data-mining  estimation  contingency-tables  epidemiology  standard-deviation  mean  ancova  psychology  statistical-significance  cross-validation  synthetic-data  poisson-distribution  negative-binomial  bioinformatics  sequence-analysis  distributions  binomial  classification  k-means  distance  unsupervised-learning  euclidean  correlation  chi-squared  spearman-rho  forecasting  excel  exponential-smoothing  binomial  sample-size  r  change-point  wilcoxon-signed-rank  ranks  clustering  matlab  covariance  covariance-matrix  normal-distribution  simulation  random-generation  bivariate  standardization  confounding  z-statistic  forecasting  arima  minitab  poisson-distribution  negative-binomial  poisson-regression  overdispersion  probability  self-study  markov-process  estimation  maximum-likelihood  classification  pca  group-differences  chi-squared  survival  missing-data  contingency-tables  anova  proportion 

Korzystając z naszej strony potwierdzasz, że przeczytałeś(-aś) i rozumiesz nasze zasady używania plików cookie i zasady ochrony prywatności.
Licensed under cc by-sa 3.0 with attribution required.