Pytania otagowane jako spss

SPSS to statystyczny pakiet oprogramowania. Tego znacznika należy używać w przypadku dowolnego pytania na temat, które (a) dotyczy SPSS albo jako krytycznej części pytania, albo oczekiwanej odpowiedzi, a (b) nie dotyczy tylko sposobu używania SPSS.

25
Python jako stół roboczy statystyk
Wiele osób korzysta z głównego narzędzia, takiego jak Excel lub inny arkusz kalkulacyjny, SPSS, Stata lub R do swoich potrzeb statystycznych. Mogą zwrócić się do konkretnego pakietu dla bardzo specjalnych potrzeb, ale wiele rzeczy można zrobić za pomocą prostego arkusza kalkulacyjnego lub ogólnego pakietu statystyk lub środowiska programowania statystyk. Zawsze …
355 r  spss  stata  python 

3
Przykład: regresja LASSO z użyciem glmnet dla wyniku binarnego
Zaczynam bawić sięglmnet za pomocą regresji LASSO, gdzie moje wyniki zainteresowania są dychotomiczne. Poniżej utworzyłem małą próbną ramkę danych: age <- c(4, 8, 7, 12, 6, 9, 10, 14, 7) gender <- c(1, 0, 1, 1, 1, 0, 1, 0, 0) bmi_p <- c(0.86, 0.45, 0.99, 0.84, 0.85, 0.67, 0.91, …
77 r  self-study  lasso  regression  interpretation  anova  statistical-significance  survey  conditional-probability  independence  naive-bayes  graphical-model  r  time-series  forecasting  arima  r  forecasting  exponential-smoothing  bootstrap  outliers  r  regression  poisson-distribution  zero-inflation  genetic-algorithms  machine-learning  feature-selection  cart  categorical-data  interpretation  descriptive-statistics  variance  multivariate-analysis  covariance-matrix  r  data-visualization  generalized-linear-model  binomial  proportion  pca  matlab  svd  time-series  correlation  spss  arima  chi-squared  curve-fitting  text-mining  zipf  probability  categorical-data  distance  group-differences  bhattacharyya  regression  variance  mean  data-visualization  variance  clustering  r  standard-error  association-measure  somers-d  normal-distribution  integral  numerical-integration  bayesian  clustering  python  pymc  nonparametric-bayes  machine-learning  svm  kernel-trick  hyperparameter  poisson-distribution  mean  continuous-data  univariate  missing-data  dag  python  likelihood  dirichlet-distribution  r  anova  hypothesis-testing  statistical-significance  p-value  rating  data-imputation  censoring  threshold 

3
Kiedy R jest kwadratem ujemne?
Mi się, że nie mogą być ujemne, jak to jest kwadratem R. Jednakże uruchomiony prostą regresję liniową w SPSS z jedną zmienną niezależną i zmienną zależną. Moje wyjście SPSS dają mi ujemną wartość R 2 . Jeśli nie było obliczyć tego ręką z R wówczas R 2 to pozytywny. Co …

8
Czy po PCA następuje obrót (np. Varimax) nadal PCA?
Próbowałem odtworzyć niektóre badania (używając PCA) z SPSS w R. Z mojego doświadczenia wynika, że principal() funkcja z pakietu psychbyła jedyną funkcją, która się zbliżyła (lub jeśli moja pamięć służy mi dobrze, martwa), aby dopasować wynik. Aby dopasować te same wyniki co w SPSS, musiałem użyć parametru principal(..., rotate = …


3
Interpretacja predyktora i / lub odpowiedzi transformowanej logarytmicznie
Zastanawiam się, czy ma to znaczenie w interpretacji, czy transformowane są tylko zmienne zależne, zależne i niezależne, czy tylko zmienne niezależne. Rozważ przypadek log(DV) = Intercept + B1*IV + Error Mogę interpretować IV jako wzrost procentowy, ale jak to się zmienia, kiedy mam log(DV) = Intercept + B1*log(IV) + Error …
46 regression  data-transformation  interpretation  regression-coefficients  logarithm  r  dataset  stata  hypothesis-testing  contingency-tables  hypothesis-testing  statistical-significance  standard-deviation  unbiased-estimator  t-distribution  r  functional-data-analysis  maximum-likelihood  bootstrap  regression  change-point  regression  sas  hypothesis-testing  bayesian  randomness  predictive-models  nonparametric  terminology  parametric  correlation  effect-size  loess  mean  pdf  quantile-function  bioinformatics  regression  terminology  r-squared  pdf  maximum  multivariate-analysis  references  data-visualization  r  pca  r  mixed-model  lme4-nlme  distributions  probability  bayesian  prior  anova  chi-squared  binomial  generalized-linear-model  anova  repeated-measures  t-test  post-hoc  clustering  variance  probability  hypothesis-testing  references  binomial  profile-likelihood  self-study  excel  data-transformation  skewness  distributions  statistical-significance  econometrics  spatial  r  regression  anova  spss  linear-model 

3
Dlaczego istnieje różnica pomiędzy ręcznym obliczeniem regresji logistycznej 95% przedziału ufności a użyciem funkcji confint () w R?
Drodzy wszyscy - zauważyłem coś dziwnego, czego nie potrafię wyjaśnić, prawda? Podsumowując: ręczne podejście do obliczania przedziału ufności w modelu regresji logistycznej oraz funkcja R confint()dają różne wyniki. Przechodziłem przez regresję logistyczną stosowaną przez Hosmer & Lemeshow (2. edycja). W trzecim rozdziale znajduje się przykład obliczenia ilorazu szans i 95% …
34 r  regression  logistic  confidence-interval  profile-likelihood  correlation  mcmc  error  mixture  measurement  data-augmentation  r  logistic  goodness-of-fit  r  time-series  exponential  descriptive-statistics  average  expected-value  data-visualization  anova  teaching  hypothesis-testing  multivariate-analysis  r  r  mixed-model  clustering  categorical-data  unsupervised-learning  r  logistic  anova  binomial  estimation  variance  expected-value  r  r  anova  mixed-model  multiple-comparisons  repeated-measures  project-management  r  poisson-distribution  control-chart  project-management  regression  residuals  r  distributions  data-visualization  r  unbiased-estimator  kurtosis  expected-value  regression  spss  meta-analysis  r  censoring  regression  classification  data-mining  mixture 


5
Jak radzić sobie z hierarchicznymi / zagnieżdżonymi danymi w uczeniu maszynowym
Wyjaśnię mój problem na przykładzie. Załóżmy, że chcesz przewidzieć dochód danej osoby na podstawie niektórych atrybutów: {Wiek, płeć, kraj, region, miasto}. Masz taki zestaw danych szkoleniowych train <- data.frame(CountryID=c(1,1,1,1, 2,2,2,2, 3,3,3,3), RegionID=c(1,1,1,2, 3,3,4,4, 5,5,5,5), CityID=c(1,1,2,3, 4,5,6,6, 7,7,7,8), Age=c(23,48,62,63, 25,41,45,19, 37,41,31,50), Gender=factor(c("M","F","M","F", "M","F","M","F", "F","F","F","M")), Income=c(31,42,71,65, 50,51,101,38, 47,50,55,23)) train CountryID RegionID CityID …
29 regression  machine-learning  multilevel-analysis  correlation  dataset  spatial  paired-comparisons  cross-correlation  clustering  aic  bic  dependent-variable  k-means  mean  standard-error  measurement-error  errors-in-variables  regression  multiple-regression  pca  linear-model  dimensionality-reduction  machine-learning  neural-networks  deep-learning  conv-neural-network  computer-vision  clustering  spss  r  weighted-data  wilcoxon-signed-rank  bayesian  hierarchical-bayesian  bugs  stan  distributions  categorical-data  variance  ecology  r  survival  regression  r-squared  descriptive-statistics  cross-section  maximum-likelihood  factor-analysis  likert  r  multiple-imputation  propensity-scores  distributions  t-test  logit  probit  z-test  confidence-interval  poisson-distribution  deep-learning  conv-neural-network  residual-networks  r  survey  wilcoxon-mann-whitney  ranking  kruskal-wallis  bias  loss-functions  frequentist  decision-theory  risk  machine-learning  distributions  normal-distribution  multivariate-analysis  inference  dataset  factor-analysis  survey  multilevel-analysis  clinical-trials 

1
Najlepsze metody ekstrakcji czynnikowej w analizie czynnikowej
SPSS oferuje kilka metod ekstrakcji czynników: Główne składniki (które wcale nie są analizą czynnikową) Nieważone najmniejsze kwadraty Uogólnione najmniejsze kwadraty Maksymalne prawdopodobieństwo Głównej osi Faktoring alfa Faktoring obrazu Ignorując pierwszą metodę, która nie jest analizą czynnikową (ale analizą głównego składnika, PCA), która z tych metod jest „najlepsza”? Jakie są względne …


1
Obliczanie powtarzalności efektów z modelu Lmer
Właśnie natknąłem się na ten artykuł , który opisuje, jak obliczyć powtarzalność (aka niezawodność, aka korelacja wewnątrzklasowa) pomiaru za pomocą modelowania efektów mieszanych. Kod R byłby następujący: #fit the model fit = lmer(dv~(1|unit),data=my_data) #obtain the variance estimates vc = VarCorr(fit) residual_var = attr(vc,'sc')^2 intercept_var = attr(vc$id,'stddev')[1]^2 #compute the unadjusted repeatability …
28 mixed-model  reliability  intraclass-correlation  repeatability  spss  factor-analysis  survey  modeling  cross-validation  error  curve-fitting  mediation  correlation  clustering  sampling  machine-learning  probability  classification  metric  r  project-management  optimization  svm  python  dataset  quality-control  checking  clustering  distributions  anova  factor-analysis  exponential  poisson-distribution  generalized-linear-model  deviance  machine-learning  k-nearest-neighbour  r  hypothesis-testing  t-test  r  variance  levenes-test  bayesian  software  bayesian-network  regression  repeated-measures  least-squares  change-scores  variance  chi-squared  variance  nonlinear-regression  regression-coefficients  multiple-comparisons  p-value  r  statistical-significance  excel  sampling  sample  r  distributions  interpretation  goodness-of-fit  normality-assumption  probability  self-study  distributions  references  theory  time-series  clustering  econometrics  binomial  hypothesis-testing  variance  t-test  paired-comparisons  statistical-significance  ab-test  r  references  hypothesis-testing  t-test  normality-assumption  wilcoxon-mann-whitney  central-limit-theorem  t-test  data-visualization  interactive-visualization  goodness-of-fit 

4
Różnica między regułą dwumianową, ujemną dwumianową i regresją Poissona
Szukam informacji na temat różnicy między regresją dwumianową, ujemną dwumianową i regresją Poissona i dla jakich sytuacji ta regresja najlepiej pasuje. Czy są jakieś testy, które mogę wykonać w SPSS, które mogą mi powiedzieć, która z tych regresji jest najlepsza w mojej sytuacji? Ponadto, jak uruchomić Poissona lub dwumian ujemny …

2
CHAID vs CRT (lub CART)
Korzystam z klasyfikacji drzewa decyzyjnego za pomocą SPSS na zestawie danych z około 20 predyktorami (kategorycznie z kilkoma kategoriami). CHAID (chi-kwadrat automatyczne wykrywanie interakcji) i CRT / CART (drzewa klasyfikacji i regresji) dają mi różne drzewa. Czy ktoś może wyjaśnić względne zalety CHAID vs CRT? Jakie są konsekwencje korzystania z …
23 spss  cart 

2
Jak grupować szeregi czasowe?
Mam pytanie dotyczące analizy skupień. Istnieje 3000 firm, które muszą być grupowane w zależności od zużycia energii przez 5 lat. Każda firma ma wartości dla każdej godziny przez 5 lat. Chciałbym dowiedzieć się, czy niektóre firmy mają taki sam wzorzec mocy użytkowej w danym okresie. Wyniki należy wykorzystać do codziennego …

2
Metody obliczania wyników czynnikowych i jaka jest macierz „współczynnika wyników” w PCA lub analizie czynnikowej?
Jak rozumiem, w PCA opartym na korelacjach otrzymujemy ładunki czynnikowe (= główny składnik w tym przypadku), które są niczym innym jak korelacjami między zmiennymi i czynnikami. Teraz, gdy muszę wygenerować wyniki czynnikowe w SPSS, mogę bezpośrednio uzyskać wyniki czynnikowe każdego respondenta dla każdego czynnika. Zauważyłem również, że jeśli pomnożę „ …

4
Jakie są prawidłowe wartości precyzji i przywołania w przypadkach krawędzi?
Precyzja jest zdefiniowana jako: p = true positives / (true positives + false positives) Czy jest to prawidłowe, że, jak true positivesi false positivespodejście 0, precyzja zbliża 1? To samo pytanie do przypomnienia: r = true positives / (true positives + false negatives) Obecnie wdrażam test statystyczny, w którym muszę …
20 precision-recall  data-visualization  logarithm  references  r  networks  data-visualization  standard-deviation  probability  binomial  negative-binomial  r  categorical-data  aggregation  plyr  survival  python  regression  r  t-test  bayesian  logistic  data-transformation  confidence-interval  t-test  interpretation  distributions  data-visualization  pca  genetics  r  finance  maximum  probability  standard-deviation  probability  r  information-theory  references  computational-statistics  computing  references  engineering-statistics  t-test  hypothesis-testing  independence  definition  r  censoring  negative-binomial  poisson-distribution  variance  mixed-model  correlation  intraclass-correlation  aggregation  interpretation  effect-size  hypothesis-testing  goodness-of-fit  normality-assumption  small-sample  distributions  regression  normality-assumption  t-test  anova  confidence-interval  z-statistic  finance  hypothesis-testing  mean  model-selection  information-geometry  bayesian  frequentist  terminology  type-i-and-ii-errors  cross-validation  smoothing  splines  data-transformation  normality-assumption  variance-stabilizing  r  spss  stata  python  correlation  logistic  logit  link-function  regression  predictor  pca  factor-analysis  r  bayesian  maximum-likelihood  mcmc  conditional-probability  statistical-significance  chi-squared  proportion  estimation  error  shrinkage  application  steins-phenomenon 



3
Prognozowanie wariancji danych heteroscedastycznych
Próbuję wykonać regresję danych heteroscedastycznych, w których próbuję przewidzieć wariancje błędów, a także wartości średnie w odniesieniu do modelu liniowego. Coś takiego: y(x,t)ξ(x,t)y¯(x,t)σ(x,t)=y¯(x,t)+ξ(x,t),∼N(0,σ(x,t)),=y0+ax+bt,=σ0+cx+dt.y(x,t)=y¯(x,t)+ξ(x,t),ξ(x,t)∼N(0,σ(x,t)),y¯(x,t)=y0+ax+bt,σ(x,t)=σ0+cx+dt.\begin{align}\\ y\left(x,t\right) &= \bar{y}\left(x,t\right)+\xi\left(x,t\right),\\ \xi\left(x,t\right) &\sim N\left(0,\sigma\left(x,t\right)\right),\\ \bar{y}\left(x,t\right) &= y_{0}+ax+bt,\\ \sigma\left(x,t\right) &= \sigma_{0}+cx+dt. \end{align} Słowami, dane składa się z powtarzalnych pomiarów przy różnych wartościach i . Sądzę pomiary …

5
Interpretowanie rozbieżności między R i SPSS z eksploracyjną analizą czynnikową
Jestem absolwentem informatyki. Przeprowadziłem eksploracyjną analizę czynników dla projektu badawczego. Moi koledzy (którzy prowadzą projekt) używają SPSS, podczas gdy ja wolę używać R. To nie miało znaczenia, dopóki nie odkryliśmy dużej rozbieżności między dwoma pakietami statystycznymi. Używamy faktoringu osi głównej jako metody ekstrakcji (pamiętaj, że jestem świadomy różnicy między PCA …

5
Stopniowa regresja logistyczna i pobieranie próbek
Dopasowuję krokową regresję logistyczną dla zestawu danych w SPSS. W procedurze dopasowuję mój model do losowego podzbioru, który jest ok. 60% całej próby, co stanowi około 330 przypadków. Interesujące jest dla mnie to, że za każdym razem, gdy ponownie próbkuję moje dane, pojawiają się różne zmienne w końcowym modelu. Kilka …

5
Wielokrotna imputacja brakujących wartości
Chciałbym użyć imputacji do zastąpienia brakujących wartości w moim zbiorze danych z pewnymi ograniczeniami. Na przykład chciałbym, aby zmienna przypisana x1była większa lub równa sumie moich dwóch innych zmiennych, powiedzmy x2i x3. Chcę też x3zostać przypisany przez jeden 0lub >= 14i chcę x2zostać przypisany przez jeden 0lub >= 16. Próbowałem …

1
Kryteria wyboru „najlepszego” modelu w ukrytym modelu Markowa
Mam zestaw danych szeregów czasowych, do którego próbuję dopasować ukryty model Markowa (HMM) w celu oszacowania liczby stanów ukrytych w danych. Mój pseudo-kod do tego jest następujący: for( i in 2 : max_number_of_states ){ ... calculate HMM with i states ... optimal_number_of_states = "model with smallest BIC" ... } Teraz, …


5
Lepsza klasyfikacja domyślna w regresji logistycznej
Pełne ujawnienie: To zadanie domowe. Zamieściłem link do zestawu danych ( http://www.bertelsen.ca/R/logistic-regression.sav ) Moim celem jest zmaksymalizowanie prognozy osób spłacających zaległości kredytowe w tym zbiorze danych. Każdy model, który do tej pory wymyśliłem, przewiduje> 90% domyślnych, ale <40% domyślnych, co daje ogólną skuteczność klasyfikacji ~ 80%. Zastanawiam się więc, czy …
12 r  logistic  spss  self-study 

2
Czy powinienem zgłaszać nieistotne wyniki?
Przeprowadziłem test Kruskala Wallisa i dla niektórych pytań wartość p nie jest znacząca. Czy zgłosiłbym to w ten sam sposób, jakby był znaczący, podając wartość df, statystykę testową i wartość p? Byłoby więc coś takiego: przeprowadzono test Kruskala Wallisa, ale stwierdzono, że wyniki nie są znaczące H (3) = 2,119, …


2
Jak uzyskać połączone wartości p na testach przeprowadzonych w wielu przypisanych zestawach danych?
Używając Amelii w R, uzyskałem wiele przypisanych zestawów danych. Następnie wykonałem test z powtarzanymi pomiarami w SPSS. Teraz chcę połączyć wyniki testu. Wiem, że mogę używać reguł Rubina (zaimplementowanych w dowolnym pakiecie wielokrotnej imputacji w R) do łączenia średnich i standardowych błędów, ale jak mam łączyć wartości p? Czy to …


Korzystając z naszej strony potwierdzasz, że przeczytałeś(-aś) i rozumiesz nasze zasady używania plików cookie i zasady ochrony prywatności.
Licensed under cc by-sa 3.0 with attribution required.