Pytania otagowane jako conditional-probability

Prawdopodobieństwo wystąpienia zdarzenia A, gdy wiadomo, że wystąpiło lub miało miejsce inne zdarzenie B. Jest to powszechnie oznaczane przez P (A | B).

4
Jakie są prawidłowe wartości precyzji i przywołania w przypadkach krawędzi?
Precyzja jest zdefiniowana jako: p = true positives / (true positives + false positives) Czy jest to prawidłowe, że, jak true positivesi false positivespodejście 0, precyzja zbliża 1? To samo pytanie do przypomnienia: r = true positives / (true positives + false negatives) Obecnie wdrażam test statystyczny, w którym muszę …
20 precision-recall  data-visualization  logarithm  references  r  networks  data-visualization  standard-deviation  probability  binomial  negative-binomial  r  categorical-data  aggregation  plyr  survival  python  regression  r  t-test  bayesian  logistic  data-transformation  confidence-interval  t-test  interpretation  distributions  data-visualization  pca  genetics  r  finance  maximum  probability  standard-deviation  probability  r  information-theory  references  computational-statistics  computing  references  engineering-statistics  t-test  hypothesis-testing  independence  definition  r  censoring  negative-binomial  poisson-distribution  variance  mixed-model  correlation  intraclass-correlation  aggregation  interpretation  effect-size  hypothesis-testing  goodness-of-fit  normality-assumption  small-sample  distributions  regression  normality-assumption  t-test  anova  confidence-interval  z-statistic  finance  hypothesis-testing  mean  model-selection  information-geometry  bayesian  frequentist  terminology  type-i-and-ii-errors  cross-validation  smoothing  splines  data-transformation  normality-assumption  variance-stabilizing  r  spss  stata  python  correlation  logistic  logit  link-function  regression  predictor  pca  factor-analysis  r  bayesian  maximum-likelihood  mcmc  conditional-probability  statistical-significance  chi-squared  proportion  estimation  error  shrinkage  application  steins-phenomenon 

3
Dlaczego w twierdzeniu Bayesa wymagany jest czynnik normalizujący?
Twierdzenie Bayesa idzie P.( model | dane ) = P( model ) × P( dane | model )P.( dane )P.(Model|dane)=P.(Model)×P.(dane|Model)P.(dane) P(\textrm{model}|\textrm{data}) = \frac{P(\textrm{model}) \times P(\textrm{data}|\textrm{model})}{P(\textrm{data})} Wszystko w porządku. Ale gdzieś przeczytałem: Zasadniczo P (dane) jest tylko stałą normalizującą, tj. Stałą, która powoduje zintegrowanie gęstości tylnej z jedną. Wiemy, że i …

3
Intuicja warunkowego oczekiwania na -algebra
Niech będzie przestrzenią prawdopodobieństwa, biorąc pod uwagę zmienną losową i a -algebra możemy zbudować nową zmienną losową , która jest warunkowym oczekiwaniem.( Ω , F , μ ) (Ω,F,μ)(\Omega,\mathscr{F},\mu)ξ : Ω → Rξ:Ω→R\xi:\Omega \to \mathbb{R} σ σ\sigmaG ⊆ FG⊆F\mathscr{G}\subseteq \mathscr{F} E [ ξ | G ]E[ξ|G]E[\xi|\mathscr{G}] Jaka jest intuicja do …

4
Problem z dowodem warunkowego oczekiwania jako najlepszego predyktora
Mam problem z dowodem E(Y|X)∈argming(X)E[(Y−g(X))2]E(Y|X)∈arg⁡ming(X)E[(Y−g(X))2]E(Y|X) \in \arg \min_{g(X)} E\Big[\big(Y - g(X)\big)^2\Big] które najprawdopodobniej ujawnią głębsze nieporozumienie oczekiwań i oczekiwań warunkowych. Dowód, który znam, wygląda następująco (inną wersję tego dowodu można znaleźć tutaj ) ===argming(X)E[(Y−g(x))2]argming(X)E[(Y−E(Y|X)+E(Y|X)−g(X))2]argming(x)E[(Y−E(Y|X))2+2(Y−E(Y|X))(E(Y|X)−g(X))+(E(Y|X)−g(X))2]argming(x)E[2(Y−E(Y|X))(E(Y|X)−g(X))+(E(Y|X)−g(X))2]arg⁡ming(X)E[(Y−g(x))2]=arg⁡ming(X)E[(Y−E(Y|X)+E(Y|X)−g(X))2]=arg⁡ming(x)E[(Y−E(Y|X))2+2(Y−E(Y|X))(E(Y|X)−g(X))+(E(Y|X)−g(X))2]=arg⁡ming(x)E[2(Y−E(Y|X))(E(Y|X)−g(X))+(E(Y|X)−g(X))2]\begin{align*} &\arg \min_{g(X)} E\Big[\big(Y - g(x)\big)^2\Big]\\ = &\arg \min_{g(X)} E \Big[ \big(Y - E(Y|X) + E(Y|X) - …


3
Czy prawdopodobieństwo a posteriori może być> 1?
We wzorze Bayesa: P(x|a)=P(a|x)P(x)P(a)P(x|a)=P(a|x)P(x)P(a)P(x|a) = \frac{P(a|x) P(x)}{P(a)} czy prawdopodobieństwo tylne może przekraczać 1?P(x|a)P(x|a)P(x|a) Myślę, że jest to możliwe, jeśli na przykład przyjmujemy, że i oraz . Ale nie jestem tego pewien, bo co to znaczy, że prawdopodobieństwo jest większe niż jeden?P ( a ) < P ( x ) < …

1
symulowanie losowych próbek z danym MLE
To pytanie zwalidowane krzyżowo z pytaniem o symulację próbki uwarunkowanej ustaloną sumą przypomniało mi o problemie postawionym mi przez George'a Casellę . fa(x|θ)f(x|θ)f(x|\theta)(X1,…,Xn)(X1,…,Xn)(X_1,\ldots,X_n)θθ\thetaθ^(x1,…,xn)=argmin∑i=1nlogf(xi|θ)θ^(x1,…,xn)=arg⁡min∑i=1nlog⁡f(xi|θ)\hat{\theta}(x_1,\ldots,x_n)=\arg\min \sum_{i=1}^n \log f(x_i|\theta)θθ\theta θ (X1,...,xn)(X1,…,Xn)(X1,…,Xn)(X_1,\ldots,X_n)θ^(X1,…,Xn)θ^(X1,…,Xn)\hat{\theta}(X_1,\ldots,X_n) Weźmy na przykład rozkład , z parametrem lokalizacji , którego gęstość wynosi If jak możemy symulować uwarunkowane na ? W tym przykładzie …



4
Dlaczego P (A, B | C) / P (B | C) = P (A | B, C)?
Rozumiem P(A∩B)/P(B)=P(A|B)P(A∩B)/P(B)=P(A|B)P(A\cap B)/P(B) = P(A|B) . Warunkowe jest przecięciem A i B podzielonym przez cały obszar B. Ale dlaczego P(A∩B|C)/P(B|C)=P(A|B∩C)P(A∩B|C)/P(B|C)=P(A|B∩C)P(A\cap B|C)/P(B|C) = P(A|B \cap C) ? Czy możesz podać trochę intuicji? Czy nie powinno być: ?P(A∩B∩C)/P(B,C)=P(A|B∩C)P(A∩B∩C)/P(B,C)=P(A|B∩C)P(A\cap B \cap C)/P(B,C) = P(A|B \cap C)


3
Jeśli są IID, to oblicz , gdzie
Pytanie Jeśli są IID, to oblicz , gdzie .X1,⋯,Xn∼N(μ,1)X1,⋯,Xn∼N(μ,1)X_1,\cdots,X_n \sim \mathcal{N}(\mu, 1)E(X1∣T)E(X1∣T)\mathbb{E}\left( X_1 \mid T \right)T=∑iXiT=∑iXiT = \sum_i X_i Próba : Sprawdź, czy poniższe informacje są prawidłowe. Powiedzmy, że bierzemy sumę tych warunkowych oczekiwań, tak, że: ∑iE(Xi∣T)=E(∑iXi∣T)=T.∑iE(Xi∣T)=E(∑iXi∣T)=T.\begin{align} \sum_i \mathbb{E}\left( X_i \mid T \right) = \mathbb{E}\left( \sum_i X_i \mid T \right) …

6
Ważniejsza statystyka: „90 procent wszystkich kobiet przeżyło” czy „90 procent wszystkich kobiet, które przeżyły, to kobiety”?
Rozważ następujące stwierdzenia dotyczące Titanica: Założenie 1: tylko mężczyźni i kobiety byli na statku Założenie 2: Było wielu mężczyzn i kobiet Oświadczenie 1: 90 procent wszystkich kobiet przeżyło Oświadczenie 2: 90 procent wszystkich, którzy przeżyli, to kobiety Pierwszy wskazuje, że ratowanie kobiet miało prawdopodobnie wysoki priorytet (niezależnie od tego, czy …

1
Twierdzenie Bayesa z wieloma warunkami
Nie rozumiem, jak wyprowadzono to równanie. P(I|M1∩M2)≤P(I)P(I′)⋅P(M1|I)P(M2|I)P(M1|I′)P(M2|I′)P(I|M1∩M2)≤P(I)P(I′)⋅P(M1|I)P(M2|I)P(M1|I′)P(M2|I′)P(I|M_{1}\cap M_{2}) \leq \frac{P(I)}{P(I')}\cdot \frac{P(M_{1}|I)P(M_{2}|I)}{P(M_{1}|I')P(M_{2}|I')} To równanie pochodzi z pracy „Trial by Probability”, gdzie przypadek OJ Simpsona podano jako przykładowy problem. Oskarżony jest sądzony za podwójne zabójstwo i przedstawiono mu dwa dowody. M1M1M_{1} to zdarzenie, w którym krew pozwanego odpowiada kropli krwi znalezionej na …

3
Prawdopodobieństwo warunkowe zmiennej ciągłej
Załóżmy, że zmienna losowa ma ciągły rozkład jednolity o parametrach 0 i 10 (tj. )UUUU∼U(0,10)U∼U(0,10)U \sim \rm{U}(0,10) Teraz oznaczmy A zdarzenie, które = 5, a B zdarzenie, które jest równe albo albo 6. Według mojego zrozumienia, oba zdarzenia mają zerowe prawdopodobieństwo wystąpienia.UUUUUU555 Teraz, jeśli rozważymy obliczenie , nie możemy użyć …

Korzystając z naszej strony potwierdzasz, że przeczytałeś(-aś) i rozumiesz nasze zasady używania plików cookie i zasady ochrony prywatności.
Licensed under cc by-sa 3.0 with attribution required.