Pytania otagowane jako method-of-moments

Metoda estymacji parametrów poprzez zrównanie momentów próby i populacji, a następnie rozwiązanie równań dla nieznanych parametrów.

7
Przykłady, w których metoda momentów może przekroczyć maksymalne prawdopodobieństwo w małych próbkach?
Estymatory maksymalnego prawdopodobieństwa (MLE) są asymptotycznie skuteczne; widzimy praktyczny wynik w tym, że często wypadają lepiej niż szacunki metodą momentów (MoM) (gdy się różnią), nawet przy małych próbkach Tutaj „lepsze niż” oznacza w tym sensie, że zazwyczaj ma mniejszą wariancję, gdy oba są obiektywne, i zazwyczaj mniejszy średni błąd kwadratowy …

5
Szacowanie maksymalnego prawdopodobieństwa - dlaczego jest używane, mimo że w wielu przypadkach jest stronnicze
Szacowanie maksymalnego prawdopodobieństwa często skutkuje tendencyjnymi estymatorami (np. Jego oszacowanie dla wariancji próby jest tendencyjne dla rozkładu Gaussa). Co zatem sprawia, że ​​jest tak popularny? Dlaczego dokładnie jest tak często używany? Co w szczególności czyni go lepszym niż alternatywne podejście - metoda chwil? Zauważyłem również, że dla Gaussa proste skalowanie …


4
Czym dokładnie są chwile? Jak powstają?
Zazwyczaj wprowadzamy się do metody estymatorów momentów poprzez „zrównanie momentów populacyjnych z ich odpowiednikiem próbki”, dopóki nie oszacujemy wszystkich parametrów populacji; tak, że w przypadku rozkładu normalnego potrzebowalibyśmy tylko pierwszego i drugiego momentu, ponieważ w pełni opisują ten rozkład. E(X)=μ⟹∑ni=1Xi/n=X¯E(X)=μ⟹∑i=1nXi/n=X¯E(X) = \mu \implies \sum_{i=1}^n X_i/n = \bar{X} E(X2)=μ2+σ2⟹∑ni=1X2i/nE(X2)=μ2+σ2⟹∑i=1nXi2/nE(X^2) = \mu^2 …

1
Kiedy maksymalne prawdopodobieństwo i metoda momentów dają te same estymatory?
Zadano mi to pytanie pewnego dnia i nigdy wcześniej go nie rozważałem. Moja intuicja wynika z zalet każdego estymatora. Maksymalne prawdopodobieństwo występuje najlepiej, gdy jesteśmy pewni procesu generowania danych, ponieważ w przeciwieństwie do metody momentów wykorzystuje wiedzę o całej dystrybucji. Ponieważ estymatory MoM wykorzystują tylko informacje zawarte w momentach, wydaje …

1
Związek między funkcją generującą moment a funkcją charakterystyczną
Próbuję zrozumieć związek między funkcją generującą moment a funkcją charakterystyczną. Funkcja generowania momentu jest zdefiniowana jako: MX(t)=E(exp(tX))=1+tE(X)1+t2E(X2)2!+⋯+tnE(Xn)n!MX(t)=E(exp⁡(tX))=1+tE(X)1+t2E(X2)2!+⋯+tnE(Xn)n! M_X(t) = E(\exp(tX)) = 1 + \frac{t E(X)}{1} + \frac{t^2 E(X^2)}{2!} + \dots + \frac{t^n E(X^n)}{n!} Wykorzystanie rozszerzenia szeregowego , Mogę znaleźć wszystkie momenty rozkładu dla zmiennej losowej X.exp(tX)=∑∞0(t)n⋅Xnn!exp⁡(tX)=∑0∞(t)n⋅Xnn!\exp(tX) = \sum_0^{\infty} \frac{(t)^n \cdot …

1
Czy ANOVA opiera się na metodzie chwil, a nie na maksymalnym prawdopodobieństwie?
Widzę w różnych miejscach wspomniane, że ANOVA dokonuje oszacowania za pomocą metody momentów. Twierdzenie to wprawia mnie w zakłopotanie, ponieważ chociaż nie znam metody momentów, rozumiem, że jest to coś innego niż metoda największego prawdopodobieństwa i nie jest ona równoważna; z drugiej strony, ANOVA może być postrzegana jako regresja liniowa …


3
Jaka jest metoda momentów i czym różni się od MLE?
Zasadniczo wydaje się, że metoda momentów polega jedynie na dopasowaniu obserwowanej średniej próbki lub wariancji do momentów teoretycznych w celu uzyskania oszacowań parametrów. Rozumiem, że jest to często to samo co MLE dla rodzin wykładniczych. Jednak trudno jest znaleźć jasną definicję metody momentów i jasną dyskusję na temat tego, dlaczego …

2
Skąd mam wiedzieć, którą metodę szacowania parametrów wybrać?
Istnieje wiele metod szacowania parametrów. MLE, UMVUE, MoM, teoretyka decyzyjna i inne wydają się mieć dość logiczne uzasadnienie, dlaczego są przydatne do szacowania parametrów. Czy jakakolwiek metoda jest lepsza od innych, czy może to tylko kwestia tego, jak zdefiniujemy, czym jest „najlepiej dopasowany” estymator (podobny do tego, w jaki sposób …


1
Który model głębokiego uczenia może klasyfikować kategorie, które nie wykluczają się wzajemnie
Przykłady: w opisie stanowiska mam zdanie: „Starszy inżynier Java w Wielkiej Brytanii”. Chcę użyć modelu głębokiego uczenia się, aby przewidzieć go jako 2 kategorie: English i IT jobs. Jeśli użyję tradycyjnego modelu klasyfikacji, może on przewidzieć tylko 1 etykietę z softmaxfunkcją na ostatniej warstwie. Dlatego mogę użyć 2 modelowych sieci …
9 machine-learning  deep-learning  natural-language  tensorflow  sampling  distance  non-independent  application  regression  machine-learning  logistic  mixed-model  control-group  crossover  r  multivariate-analysis  ecology  procrustes-analysis  vegan  regression  hypothesis-testing  interpretation  chi-squared  bootstrap  r  bioinformatics  bayesian  exponential  beta-distribution  bernoulli-distribution  conjugate-prior  distributions  bayesian  prior  beta-distribution  covariance  naive-bayes  smoothing  laplace-smoothing  distributions  data-visualization  regression  probit  penalized  estimation  unbiased-estimator  fisher-information  unbalanced-classes  bayesian  model-selection  aic  multiple-regression  cross-validation  regression-coefficients  nonlinear-regression  standardization  naive-bayes  trend  machine-learning  clustering  unsupervised-learning  wilcoxon-mann-whitney  z-score  econometrics  generalized-moments  method-of-moments  machine-learning  conv-neural-network  image-processing  ocr  machine-learning  neural-networks  conv-neural-network  tensorflow  r  logistic  scoring-rules  probability  self-study  pdf  cdf  classification  svm  resampling  forecasting  rms  volatility-forecasting  diebold-mariano  neural-networks  prediction-interval  uncertainty 
Korzystając z naszej strony potwierdzasz, że przeczytałeś(-aś) i rozumiesz nasze zasady używania plików cookie i zasady ochrony prywatności.
Licensed under cc by-sa 3.0 with attribution required.