Pytania otagowane jako glmm

Uogólnione liniowe modele mieszane (efekty) są zwykle używane do modelowania nie-niezależnych, nienormalnych danych (np. Podłużne dane binarne).

1
Jak włączyć innowacyjną wartość odstającą przy obserwacji 48 w moim modelu ARIMA?
Pracuję nad zestawem danych. Po zastosowaniu niektórych technik identyfikacji modelu, wyszłam z modelem ARIMA (0,2,1). Użyłem detectIOfunkcji w pakiecie TSAw R do wykrycia innowacyjnej wartości odstającej (IO) przy 48. obserwacji mojego oryginalnego zestawu danych. Jak włączyć tę wartość odstającą do mojego modelu, aby móc jej używać do celów prognozowania? Nie …
10 r  time-series  arima  outliers  hypergeometric  fishers-exact  r  time-series  intraclass-correlation  r  logistic  glmm  clogit  mixed-model  spss  repeated-measures  ancova  machine-learning  python  scikit-learn  distributions  data-transformation  stochastic-processes  web  standard-deviation  r  machine-learning  spatial  similarities  spatio-temporal  binomial  sparse  poisson-process  r  regression  nonparametric  r  regression  logistic  simulation  power-analysis  r  svm  random-forest  anova  repeated-measures  manova  regression  statistical-significance  cross-validation  group-differences  model-comparison  r  spatial  model-evaluation  parallel-computing  generalized-least-squares  r  stata  fitting  mixture  hypothesis-testing  categorical-data  hypothesis-testing  anova  statistical-significance  repeated-measures  likert  wilcoxon-mann-whitney  boxplot  statistical-significance  confidence-interval  forecasting  prediction-interval  regression  categorical-data  stata  least-squares  experiment-design  skewness  reliability  cronbachs-alpha  r  regression  splines  maximum-likelihood  modeling  likelihood-ratio  profile-likelihood  nested-models 

3
Jak uzyskać przedział ufności dla zmiany r-kwadratowej populacji
Dla prostego przykładu załóżmy, że istnieją dwa modele regresji liniowej 1 Model posiada trzy czynniki prognostyczne, x1a, x2b, ix2c Model 2 ma trzy predyktory z modelu 1 i dwa dodatkowe predyktory x2aorazx2b Istnieje równanie regresji populacji, w którym wyjaśniona wariancja populacji wynosi ρ2(1)ρ(1)2\rho^2_{(1)} dla Modelu 1 i ρ2(2)ρ(2)2\rho^2_{(2)} dla Modelu …

3
Naprawiono vs efekty losowe
Niedawno zacząłem uczyć się o uogólnionych liniowych modelach mieszanych i używałem R do zbadania, jaką to różnicę traktuje członkostwo w grupie jako efekt stały lub losowy. W szczególności patrzę na omawiany tutaj przykładowy zestaw danych: http://www.ats.ucla.edu/stat/mult_pkg/glmm.htm http://www.ats.ucla.edu/stat/r/dae/melogit.htm Jak nakreślono w tym samouczku, efekt Doctor ID jest zauważalny i spodziewałem się, …

1
Dlaczego Anova () i drop1 () podają różne odpowiedzi dla GLMM?
Mam GLMM w postaci: lmer(present? ~ factor1 + factor2 + continuous + factor1*continuous + (1 | factor3), family=binomial) Kiedy używam drop1(model, test="Chi"), otrzymuję inne wyniki niż w przypadku korzystania Anova(model, type="III")z pakietu samochodowego lub summary(model). Te dwa ostatnie dają te same odpowiedzi. Korzystając z wielu sfabrykowanych danych, odkryłem, że te …
10 r  anova  glmm  r  mixed-model  bootstrap  sample-size  cross-validation  roc  auc  sampling  stratification  random-allocation  logistic  stata  interpretation  proportion  r  regression  multiple-regression  linear-model  lm  r  cross-validation  cart  rpart  logistic  generalized-linear-model  econometrics  experiment-design  causality  instrumental-variables  random-allocation  predictive-models  data-mining  estimation  contingency-tables  epidemiology  standard-deviation  mean  ancova  psychology  statistical-significance  cross-validation  synthetic-data  poisson-distribution  negative-binomial  bioinformatics  sequence-analysis  distributions  binomial  classification  k-means  distance  unsupervised-learning  euclidean  correlation  chi-squared  spearman-rho  forecasting  excel  exponential-smoothing  binomial  sample-size  r  change-point  wilcoxon-signed-rank  ranks  clustering  matlab  covariance  covariance-matrix  normal-distribution  simulation  random-generation  bivariate  standardization  confounding  z-statistic  forecasting  arima  minitab  poisson-distribution  negative-binomial  poisson-regression  overdispersion  probability  self-study  markov-process  estimation  maximum-likelihood  classification  pca  group-differences  chi-squared  survival  missing-data  contingency-tables  anova  proportion 



3
Bakterie zbierane na palcach po wielu kontaktach powierzchniowych: dane nienormalne, powtarzane pomiary, skrzyżowane osoby
Wprowadzenie Mam uczestników, którzy wielokrotnie dotykają skażonych powierzchni E. coli w dwóch warunkach ( A = w rękawiczkach, B = bez rękawiczek). Chcę wiedzieć, czy istnieje różnica między ilością bakterii na opuszkach palców w rękawicach i bez rękawiczek, ale także między liczbą kontaktów. Oba czynniki są wewnątrz uczestników. Metoda eksperymentalna: …

1
Pomóż w interpretacji danych zliczania GLMM za pomocą lme4 glmer and glmer.nb - Dwumian ujemny kontra Poisson
Mam pytania dotyczące specyfikacji i interpretacji GLMM. 3 pytania są zdecydowanie statystyczne, a 2 dotyczą bardziej R. Piszę tutaj, ponieważ ostatecznie myślę, że problemem jest interpretacja wyników GLMM. Obecnie próbuję dopasować GLMM. Korzystam z danych amerykańskiego spisu ludności z bazy danych podłużnych dróg . Moje obserwacje są traktatami spisowymi. Moją …
Korzystając z naszej strony potwierdzasz, że przeczytałeś(-aś) i rozumiesz nasze zasady używania plików cookie i zasady ochrony prywatności.
Licensed under cc by-sa 3.0 with attribution required.