mgcvOpakowanie Rposiada dwie funkcje montowania interakcji produktów napinacz: te()i ti(). Rozumiem podstawowy podział pracy między nimi (dopasowanie interakcji nieliniowej vs. rozkładanie tej interakcji na główne efekty i interakcję). To, czego nie rozumiem, to dlaczego te(x1, x2)i ti(x1) + ti(x2) + ti(x1, x2)może powodować (nieznacznie) różne wyniki. MWE (dostosowany z ?ti): …
Robię wstępne przetwarzanie danych i zamierzam później zbudować Convonets na moich danych. Moje pytanie brzmi: Powiedzmy, że mam całkowitą liczbę zestawów danych ze 100 obrazami, obliczałem średnią dla każdego ze 100 obrazów, a następnie odejmowałem je od każdego z obrazów, a następnie dzieliłem to na ciąg i zestaw sprawdzania poprawności, …
Gdy czytam stronę, większość odpowiedzi sugeruje, że w algorytmach uczenia maszynowego należy przeprowadzić weryfikację krzyżową. Jednak czytając książkę „Zrozumienie uczenia maszynowego” zobaczyłem, że istnieje ćwiczenie, które czasami lepiej nie używać weryfikacji krzyżowej. Jestem bardzo zmieszany. Kiedy algorytm uczący dla całych danych jest lepszy niż walidacja krzyżowa? Czy zdarza się to …
Próbuję wykorzystać regresję RF do prognozowania wydajności papierni. Mam dane minut po minucie dla danych wejściowych (szybkość i ilość miazgi drzewnej wchodzącej itp.), A także dla wydajności maszyny (wyprodukowany papier, moc pobierana przez maszynę) i szukam prognoz 10 minut wyprzedzić zmienne wydajności. Mam 12 miesięcy danych, więc podzieliłem je na …
Zastanawiam się, jak właściwie podejść do szkolenia i testowania modelu LASSO przy użyciu glmnet w R? W szczególności zastanawiam się, jak to zrobić, jeśli brak zewnętrznego zestawu danych testowych wymaga użycia weryfikacji krzyżowej (lub innego podobnego podejścia) do przetestowania mojego modelu LASSO. Pozwól mi rozbić mój scenariusz: Mam tylko jeden …
Rozumiem, że krotność k-krotności oszacowania błędu testu zwykle nie docenia faktycznego błędu testu. Jestem zdezorientowany, dlaczego tak jest. Rozumiem, dlaczego błąd szkolenia jest zwykle niższy niż błąd testu - ponieważ trenujesz model na tych samych danych, na których szacujesz błąd! Ale nie dotyczy to weryfikacji krzyżowej - fałd, na którym …
Niedawno zacząłem używać wygładzania ważności Pareto z pominięciem krzyżowej walidacji (PSIS-LOO), opisanej w tych artykułach: Vehtari, A., i Gelman, A. (2015). Pareto wygładził próbkowanie ważności. prefiks arXiv ( link ). Vehicletari, A., Gelman, A., i Gabry, J. (2016). Praktyczna ocena modelu Bayesa przy użyciu krzyżowej weryfikacji typu „out-one-out” i WAIC. …
Mam pewne dane, które istnieją na wykresie . Wierzchołki należą do jednej z dwóch klas , a ja jestem zainteresowany szkoleniem SVM do rozróżniania dwóch klas. Jeden odpowiedni jądro to jądro dyfuzji , gdzie jest Laplace'a z i \ p jest parametrem strojenia.G=(V,E)G=(V,E)G=(V,E)yi∈{−1,1}yi∈{−1,1}y_i\in\{-1,1\}K=exp(−βL),K=exp(−βL),K=\exp(-\beta L),LLLGGGββ\beta Strojenie SVM wymaga wyboru hiperparametrów, więc …
O ile widziałem, opinie na ten temat różnią się. Najlepsza praktyka z pewnością podyktowałaby zastosowanie weryfikacji krzyżowej (szczególnie przy porównywaniu RF z innymi algorytmami w tym samym zbiorze danych). Z drugiej strony oryginalne źródło stwierdza, że fakt błędu OOB obliczanego podczas szkolenia modelu jest wystarczającym wskaźnikiem wydajności zestawu testowego. Nawet …
Załóżmy, że mam małą próbkę, np. N = 100, i dwie klasy. Jak wybrać rozmiar zestawu szkoleniowego, walidacyjnego i testowego do uczenia maszynowego? Intuicyjnie wybrałbym Rozmiar zestawu treningowego wynosi 50 Zestaw do walidacji krzyżowej rozmiar 25 i Rozmiar testowy wynosi 25. Ale prawdopodobnie ma to mniej lub bardziej sens. Jak …
Zastanawiam się nad odpowiedzią na pytanie kilka tygodni temu Potwierdzenie wzajemnej walidacji daje jeden zestaw testowy, który można wielokrotnie wykorzystywać do celów demonstracyjnych. Wydaje się, że wszyscy zgadzamy się, że jest to pod wieloma względami cecha negatywna, ponieważ jeden ustalony zestaw może okazać się niereprezentatywny z powodu losowości. Co więcej, …
Otrzymałem trzy zredukowane modele z oryginalnego pełnego modelu przy użyciu wybór do przodu eliminacja wsteczna Technika penalizacji L1 (LASSO) Dla modeli uzyskanych za pomocą selekcji do przodu / eliminacji wstecznej uzyskałem oszacowane krzyżowo oszacowanie błędu prognozowania przy użyciu CVlmpakietu DAAGdostępnego w R. Do modelu wybranego przez LASSO użyłem cv.glm. Błąd …
Czy wybór funkcji powinien być wykonywany tylko na danych treningowych (lub wszystkich danych)? Przeszedłem kilka dyskusji i artykułów, takich jak Guyon (2003) i Singhi i Liu (2006) , ale wciąż nie jestem pewien, czy odpowiedź jest prawidłowa. Moja konfiguracja eksperymentu wygląda następująco: Zestaw danych: 50 zdrowych kontroli i 50 pacjentów …
Powiedz, że mam dwie metody uczenia się dla problemu klasyfikacji , i , i że oceniam ich wydajność uogólniającą za pomocą czegoś takiego jak wielokrotne sprawdzanie poprawności lub ładowanie początkowe. Z tego procesu otrzymuję rozkład wyników i dla każdej metody w tych powtórzeniach (np. Rozkład wartości ROC AUC dla każdego …
Pracuję nad zestawem danych. Po zastosowaniu niektórych technik identyfikacji modelu, wyszłam z modelem ARIMA (0,2,1). Użyłem detectIOfunkcji w pakiecie TSAw R do wykrycia innowacyjnej wartości odstającej (IO) przy 48. obserwacji mojego oryginalnego zestawu danych. Jak włączyć tę wartość odstającą do mojego modelu, aby móc jej używać do celów prognozowania? Nie …
Używamy plików cookie i innych technologii śledzenia w celu poprawy komfortu przeglądania naszej witryny, aby wyświetlać spersonalizowane treści i ukierunkowane reklamy, analizować ruch w naszej witrynie, i zrozumieć, skąd pochodzą nasi goście.
Kontynuując, wyrażasz zgodę na korzystanie z plików cookie i innych technologii śledzenia oraz potwierdzasz, że masz co najmniej 16 lat lub zgodę rodzica lub opiekuna.