Pytania otagowane jako separation

Separacja ma miejsce, gdy niektóre klasy wyniku kategorialnego można doskonale rozróżnić za pomocą liniowej kombinacji innych zmiennych.

8
Jak radzić sobie z idealną separacją w regresji logistycznej?
Jeśli masz zmienną, która doskonale oddziela zera i jedynki w zmiennej docelowej, R wyświetli następujący komunikat ostrzegawczy „idealna lub quasi idealna separacja”: Warning message: glm.fit: fitted probabilities numerically 0 or 1 occurred Nadal otrzymujemy model, ale szacunki współczynników są zawyżone. Jak sobie z tym radzisz w praktyce?

1
Regresja logistyczna w R doprowadziła do idealnej separacji (zjawisko Haucka-Donnera). Co teraz?
Staram się przewidzieć wynik binarny przy użyciu 50 ciągłe zmienne objaśniające (w zakresie od najbardziej zmiennych jest do ∞ ). Mój zestaw danych ma prawie 24 000 wierszy. Kiedy biegnę w R, otrzymuję:- ∞-∞-\infty∞∞\inftyglm Warning messages: 1: glm.fit: algorithm did not converge 2: glm.fit: fitted probabilities numerically 0 or 1 …

2
Model regresji logistycznej nie jest zbieżny
Mam dane na temat lotów linii lotniczych (w ramce danych o nazwie flights) i chciałbym sprawdzić, czy czas lotu ma jakikolwiek wpływ na prawdopodobieństwo znacznie opóźnionego przybycia (co oznacza 10 lub więcej minut). Uznałem, że użyję regresji logistycznej, z czasem lotu jako predyktorem i czy każdy lot był znacznie opóźniony …
39 r  logistic  separation 



1
Wybór modelu z regresją logistyczną Firtha
W małym zestawie danych ( ), z którym pracuję, kilka zmiennych daje mi idealne przewidywanie / separację . Dlatego do rozwiązania tego problemu używam regresji logistycznej Firtha .n ∼ 100n∼100n\sim100 Jeżeli wybiorę najlepszy model według AIC lub BIC , czy powinienem uwzględnić prawdopodobieństwo kary Firth przy obliczaniu tych kryteriów informacyjnych?

1
Czy jest jakieś intuicyjne wyjaśnienie, dlaczego regresja logistyczna nie zadziała w przypadku idealnej separacji? A dlaczego dodanie uregulowania to naprawi?
Prowadzimy wiele dobrych dyskusji na temat idealnej separacji w regresji logistycznej. Takich jak regresja logistyczna w R doprowadziła do idealnej separacji (zjawisko Haucka-Donnera). Co teraz? a model regresji logistycznej nie jest zbieżny . Osobiście nadal uważam, że nie jest intuicyjne, dlaczego będzie to problem i dlaczego dodanie regularyzacji to rozwiąże. …

3
Intuicja dla maszyn wektorów wsparcia i hiperpłaszczyzny
W moim projekcie chcę stworzyć model regresji logistycznej do przewidywania klasyfikacji binarnej (1 lub 0). Mam 15 zmiennych, z których 2 są kategoryczne, a pozostałe są mieszaniną zmiennych ciągłych i dyskretnych. Aby dopasować model regresji logistycznej, zalecono mi sprawdzenie liniowej separowalności za pomocą SVM, perceptronu lub programowania liniowego. Jest to …

1
Pakiet GBM vs. Caret korzystający z GBM
Stroiłem model przy użyciu caret, ale potem ponownie uruchomiłem model przy użyciu gbmpakietu. Rozumiem, że caretpakiet używa gbmi wynik powinien być taki sam. Jednak tylko szybki test przy użyciu data(iris)wykazuje rozbieżność w modelu około 5% przy użyciu RMSE i R ^ 2 jako metryki oceny. Chcę znaleźć optymalną wydajność modelu …

1
Poszukiwanie teoretycznego zrozumienia regresji logistycznej Firtha
Próbuję zrozumieć regresję logistyczną Firtha (metodę obsługi idealnego / pełnego lub quasi-pełnego rozdzielenia w regresji logistycznej), aby móc wyjaśnić to innym w uproszczony sposób. Czy ktoś ma ogólne wyjaśnienie, jakie modyfikacje wprowadza szacunek Firth w MLE? Przeczytałem, najlepiej jak potrafiłem, Firth (1993) i rozumiem, że do funkcji partytury stosowana jest …


1
R / mgcv: Dlaczego produkty tensorowe te () i ti () wytwarzają różne powierzchnie?
mgcvOpakowanie Rposiada dwie funkcje montowania interakcji produktów napinacz: te()i ti(). Rozumiem podstawowy podział pracy między nimi (dopasowanie interakcji nieliniowej vs. rozkładanie tej interakcji na główne efekty i interakcję). To, czego nie rozumiem, to dlaczego te(x1, x2)i ti(x1) + ti(x2) + ti(x1, x2)może powodować (nieznacznie) różne wyniki. MWE (dostosowany z ?ti): …
11 r  gam  mgcv  conditional-probability  mixed-model  references  bayesian  estimation  conditional-probability  machine-learning  optimization  gradient-descent  r  hypothesis-testing  wilcoxon-mann-whitney  time-series  bayesian  inference  change-point  time-series  anova  repeated-measures  statistical-significance  bayesian  contingency-tables  regression  prediction  quantiles  classification  auc  k-means  scikit-learn  regression  spatial  circular-statistics  t-test  effect-size  cohens-d  r  cross-validation  feature-selection  caret  machine-learning  modeling  python  optimization  frequentist  correlation  sample-size  normalization  group-differences  heteroscedasticity  independence  generalized-least-squares  lme4-nlme  references  mcmc  metropolis-hastings  optimization  r  logistic  feature-selection  separation  clustering  k-means  normal-distribution  gaussian-mixture  kullback-leibler  java  spark-mllib  data-visualization  categorical-data  barplot  hypothesis-testing  statistical-significance  chi-squared  type-i-and-ii-errors  pca  scikit-learn  conditional-expectation  statistical-significance  meta-analysis  intuition  r  time-series  multivariate-analysis  garch  machine-learning  classification  data-mining  missing-data  cart  regression  cross-validation  matrix-decomposition  categorical-data  repeated-measures  chi-squared  assumptions  contingency-tables  prediction  binary-data  trend  test-for-trend  matrix-inverse  anova  categorical-data  regression-coefficients  standard-error  r  distributions  exponential  interarrival-time  copula  log-likelihood  time-series  forecasting  prediction-interval  mean  standard-error  meta-analysis  meta-regression  network-meta-analysis  systematic-review  normal-distribution  multiple-regression  generalized-linear-model  poisson-distribution  poisson-regression  r  sas  cohens-kappa 

1
Ogromne współczynniki regresji logistycznej - co to znaczy i co robić?
Otrzymuję ogromne współczynniki podczas regresji logistycznej, patrz współczynniki z krajULKV: > summary(m5) Call: glm(formula = cbind(ml, ad) ~ rok + obdobi + kraj + resid_usili2 + rok:obdobi + rok:kraj + obdobi:kraj + kraj:resid_usili2 + rok:obdobi:kraj, family = "quasibinomial") Deviance Residuals: Min 1Q Median 3Q Max -2.7796 -1.0958 -0.3101 1.0034 2.8370 …
Korzystając z naszej strony potwierdzasz, że przeczytałeś(-aś) i rozumiesz nasze zasady używania plików cookie i zasady ochrony prywatności.
Licensed under cc by-sa 3.0 with attribution required.