Pytania otagowane jako regularization

Uwzględnienie dodatkowych ograniczeń (zwykle kara za złożoność) w procesie dopasowania modelu. Służy do zapobiegania przeuczeniu / zwiększenia dokładności predykcyjnej.

3
Jak wykonać nieujemną regresję kalenicy?
Jak wykonać nieujemną regresję kalenicy? Lasso nieujemne jest dostępne w scikit-learn, ale dla grzbietu nie mogę wymusić nieujemności bety i rzeczywiście otrzymuję współczynniki ujemne. Czy ktoś wie, dlaczego tak jest? Czy mogę również zastosować grzbiet w kategoriach zwykłych najmniejszych kwadratów? Przeniesiono to do innego pytania: Czy mogę wdrożyć regresję kalenicy …

2
Przejrzyste wyjaśnienie „stabilności numerycznej inwersji macierzy” w regresji grzbietu i jej roli w zmniejszaniu przeładowania
Rozumiem, że możemy zastosować regularyzację w przypadku problemu regresji metodą najmniejszych kwadratów jako w∗=argminw[(y−Xw)T(y−Xw)+λ∥w∥2]w∗=argminw⁡[(y−Xw)T(y−Xw)+λ‖w‖2]\boldsymbol{w}^* = \operatorname*{argmin}_w \left[ (\mathbf y-\mathbf{Xw})^T(\boldsymbol{y}-\mathbf{Xw}) + \lambda\|\boldsymbol{w}\|^2 \right] i że ten problem ma rozwiązanie zamknięte, ponieważ: w^=(XTX+λI)−1XTy.w^=(XTX+λI)−1XTy.\hat{\boldsymbol{w}} = (\boldsymbol{X}^T\boldsymbol{X}+\lambda\boldsymbol{I})^{-1}\boldsymbol{X}^T\boldsymbol{y}. Widzimy, że w drugim równaniu regularyzacja po prostu dodaje λλ\lambda do przekątnej XTXXTX\boldsymbol{X}^T\boldsymbol{X} , co ma na …


1
Regularyzowana regresja liniowa vs. regresja RKHS
Badam różnicę między regularyzacją w regresji RKHS a regresją liniową, ale trudno mi zrozumieć kluczową różnicę między nimi. Biorąc pod uwagę pary wejścia-wyjścia , chcę oszacować funkcję w następujący sposób gdzie jest funkcją jądra. Współczynniki można znaleźć, rozwiązując gdzie, z pewnym nadużyciem notacji, i, j wpis w macierzy K jądra …

1
Stosujesz regresję kalenicową dla nieokreślonego układu równań?
Gdy , problem najmniejszych kwadratów, który nakłada sferyczne ograniczenie na wartość można zapisać jako dla zbyt określonego systemu. \ | \ cdot \ | _2 to euklidesowa norma wektora.y=Xβ+ey=Xβ+ey = X\beta + eδδ\deltaββ\betamin ∥y−Xβ∥22s.t. ∥β∥22≤δ2min⁡ ‖y−Xβ‖22s.t.⁡ ‖β‖22≤δ2\begin{equation} \begin{array} &\operatorname{min}\ \| y - X\beta \|^2_2 \\ \operatorname{s.t.}\ \ \|\beta\|^2_2 \le \delta^2 …

1
Jak porównać obserwowane i oczekiwane zdarzenia?
Załóżmy, że mam jedną próbkę częstotliwości 4 możliwych zdarzeń: Event1 - 5 E2 - 1 E3 - 0 E4 - 12 i mam spodziewane prawdopodobieństwo wystąpienia moich zdarzeń: p1 - 0.2 p2 - 0.1 p3 - 0.1 p4 - 0.6 Dzięki sumie obserwowanych częstotliwości moich czterech zdarzeń (18) mogę obliczyć …
9 r  statistical-significance  chi-squared  multivariate-analysis  exponential  joint-distribution  statistical-significance  self-study  standard-deviation  probability  normal-distribution  spss  interpretation  assumptions  cox-model  reporting  cox-model  statistical-significance  reliability  method-comparison  classification  boosting  ensemble  adaboost  confidence-interval  cross-validation  prediction  prediction-interval  regression  machine-learning  svm  regularization  regression  sampling  survey  probit  matlab  feature-selection  information-theory  mutual-information  time-series  forecasting  simulation  classification  boosting  ensemble  adaboost  normal-distribution  multivariate-analysis  covariance  gini  clustering  text-mining  distance-functions  information-retrieval  similarities  regression  logistic  stata  group-differences  r  anova  confidence-interval  repeated-measures  r  logistic  lme4-nlme  inference  fiducial  kalman-filter  classification  discriminant-analysis  linear-algebra  computing  statistical-significance  time-series  panel-data  missing-data  uncertainty  probability  multivariate-analysis  r  classification  spss  k-means  discriminant-analysis  poisson-distribution  average  r  random-forest  importance  probability  conditional-probability  distributions  standard-deviation  time-series  machine-learning  online  forecasting  r  pca  dataset  data-visualization  bayes  distributions  mathematical-statistics  degrees-of-freedom 

2
Oblicz krzywą ROC dla danych
Mam więc 16 prób, w których próbuję uwierzytelnić osobę z cechy biometrycznej za pomocą Hamminga. Mój próg jest ustawiony na 3,5. Moje dane są poniżej i tylko próba 1 jest prawdziwie pozytywna: Trial Hamming Distance 1 0.34 2 0.37 3 0.34 4 0.29 5 0.55 6 0.47 7 0.47 8 …
9 mathematical-statistics  roc  classification  cross-validation  pac-learning  r  anova  survival  hazard  machine-learning  data-mining  hypothesis-testing  regression  random-variable  non-independent  normal-distribution  approximation  central-limit-theorem  interpolation  splines  distributions  kernel-smoothing  r  data-visualization  ggplot2  distributions  binomial  random-variable  poisson-distribution  simulation  kalman-filter  regression  lasso  regularization  lme4-nlme  model-selection  aic  r  mcmc  dlm  particle-filter  r  panel-data  multilevel-analysis  model-selection  entropy  graphical-model  r  distributions  quantiles  qq-plot  svm  matlab  regression  lasso  regularization  entropy  inference  r  distributions  dataset  algorithms  matrix-decomposition  regression  modeling  interaction  regularization  expected-value  exponential  gamma-distribution  mcmc  gibbs  probability  self-study  normality-assumption  naive-bayes  bayes-optimal-classifier  standard-deviation  classification  optimization  control-chart  engineering-statistics  regression  lasso  regularization  regression  references  lasso  regularization  elastic-net  r  distributions  aggregation  clustering  algorithms  regression  correlation  modeling  distributions  time-series  standard-deviation  goodness-of-fit  hypothesis-testing  statistical-significance  sample  binary-data  estimation  random-variable  interpolation  distributions  probability  chi-squared  predictor  outliers  regression  modeling  interaction 
Korzystając z naszej strony potwierdzasz, że przeczytałeś(-aś) i rozumiesz nasze zasady używania plików cookie i zasady ochrony prywatności.
Licensed under cc by-sa 3.0 with attribution required.