Pytania otagowane jako exponential-smoothing

3
Przykład: regresja LASSO z użyciem glmnet dla wyniku binarnego
Zaczynam bawić sięglmnet za pomocą regresji LASSO, gdzie moje wyniki zainteresowania są dychotomiczne. Poniżej utworzyłem małą próbną ramkę danych: age <- c(4, 8, 7, 12, 6, 9, 10, 14, 7) gender <- c(1, 0, 1, 1, 1, 0, 1, 0, 0) bmi_p <- c(0.86, 0.45, 0.99, 0.84, 0.85, 0.67, 0.91, …
77 r  self-study  lasso  regression  interpretation  anova  statistical-significance  survey  conditional-probability  independence  naive-bayes  graphical-model  r  time-series  forecasting  arima  r  forecasting  exponential-smoothing  bootstrap  outliers  r  regression  poisson-distribution  zero-inflation  genetic-algorithms  machine-learning  feature-selection  cart  categorical-data  interpretation  descriptive-statistics  variance  multivariate-analysis  covariance-matrix  r  data-visualization  generalized-linear-model  binomial  proportion  pca  matlab  svd  time-series  correlation  spss  arima  chi-squared  curve-fitting  text-mining  zipf  probability  categorical-data  distance  group-differences  bhattacharyya  regression  variance  mean  data-visualization  variance  clustering  r  standard-error  association-measure  somers-d  normal-distribution  integral  numerical-integration  bayesian  clustering  python  pymc  nonparametric-bayes  machine-learning  svm  kernel-trick  hyperparameter  poisson-distribution  mean  continuous-data  univariate  missing-data  dag  python  likelihood  dirichlet-distribution  r  anova  hypothesis-testing  statistical-significance  p-value  rating  data-imputation  censoring  threshold 

3
Funkcja ETS (), jak uniknąć prognozy niezgodnej z danymi historycznymi?
Pracuję nad alogorytmem w R, aby zautomatyzować miesięczne obliczanie prognozy. Korzystam między innymi z funkcji ets () z pakietu prognozy do obliczania prognozy. Działa bardzo dobrze. Niestety, dla niektórych konkretnych szeregów czasowych wynik, który otrzymuję jest dziwny. Poniżej znajduje się kod, którego używam: train_ts<- ts(values, frequency=12) fit2<-ets(train_ts, model="ZZZ", damped=TRUE, alpha=NULL, …

3
Model szeregów czasowych
Muszę zautomatyzować prognozowanie szeregów czasowych i nie znam z góry cech tych szeregów (sezonowość, trend, hałas itp.). Moim celem nie jest uzyskanie najlepszego możliwego modelu dla każdej serii, ale uniknięcie całkiem złych modeli. Innymi słowy, otrzymywanie drobnych błędów za każdym razem nie stanowi problemu, ale od czasu do czasu jest …

1
Kiedy stosować Wygładzanie wykładnicze vs ARIMA?
Niedawno odświeżyłem swoją wiedzę na temat prognozowania, pracując nad niektórymi miesięcznymi prognozami w pracy i czytając książkę Roba Hyndmana, ale jedyne miejsce, w którym walczę, to kiedy zastosować model wygładzania wykładniczego w porównaniu z modelem ARIMA. Czy istnieje ogólna zasada, w której należy stosować jedną metodologię zamiast innej? Ponadto, ponieważ …

3
Używać Holt-Winters czy ARIMA?
Moje pytanie dotyczy różnic koncepcyjnych między Holt-Winters a ARIMA. O ile rozumiem, Holt-Winters jest szczególnym przypadkiem ARIMA. Ale kiedy preferowany jest jeden algorytm? Być może Holt-Winters jest inkrementalny i dlatego służy jako wbudowany (szybszy) algorytm? Czekam na wgląd tutaj.


4
Prognozowanie szeregów czasowych R za pomocą sieci neuronowej, auto.arima i ets
Słyszałem trochę o używaniu sieci neuronowych do prognozowania szeregów czasowych. Jak mogę porównać, która metoda prognozowania moich szeregów czasowych (dziennych danych detalicznych) jest lepsza: auto.arima (x), ets (x) lub nnetar (x). Mogę porównać auto.arima z ets przez AIC lub BIC. Ale jak mogę je porównać z sieciami neuronowymi? Na przykład: …

1
Dlaczego Anova () i drop1 () podają różne odpowiedzi dla GLMM?
Mam GLMM w postaci: lmer(present? ~ factor1 + factor2 + continuous + factor1*continuous + (1 | factor3), family=binomial) Kiedy używam drop1(model, test="Chi"), otrzymuję inne wyniki niż w przypadku korzystania Anova(model, type="III")z pakietu samochodowego lub summary(model). Te dwa ostatnie dają te same odpowiedzi. Korzystając z wielu sfabrykowanych danych, odkryłem, że te …
10 r  anova  glmm  r  mixed-model  bootstrap  sample-size  cross-validation  roc  auc  sampling  stratification  random-allocation  logistic  stata  interpretation  proportion  r  regression  multiple-regression  linear-model  lm  r  cross-validation  cart  rpart  logistic  generalized-linear-model  econometrics  experiment-design  causality  instrumental-variables  random-allocation  predictive-models  data-mining  estimation  contingency-tables  epidemiology  standard-deviation  mean  ancova  psychology  statistical-significance  cross-validation  synthetic-data  poisson-distribution  negative-binomial  bioinformatics  sequence-analysis  distributions  binomial  classification  k-means  distance  unsupervised-learning  euclidean  correlation  chi-squared  spearman-rho  forecasting  excel  exponential-smoothing  binomial  sample-size  r  change-point  wilcoxon-signed-rank  ranks  clustering  matlab  covariance  covariance-matrix  normal-distribution  simulation  random-generation  bivariate  standardization  confounding  z-statistic  forecasting  arima  minitab  poisson-distribution  negative-binomial  poisson-regression  overdispersion  probability  self-study  markov-process  estimation  maximum-likelihood  classification  pca  group-differences  chi-squared  survival  missing-data  contingency-tables  anova  proportion 
Korzystając z naszej strony potwierdzasz, że przeczytałeś(-aś) i rozumiesz nasze zasady używania plików cookie i zasady ochrony prywatności.
Licensed under cc by-sa 3.0 with attribution required.