Jakie są zalety i wady korzystania z LARS [1] w porównaniu ze stosowaniem opadania współrzędnych w celu dopasowania regresji liniowej regulowanej przez L1? Interesują mnie głównie aspekty wydajności (moje problemy występują zwykle Nw setkach tysięcy i p<20). Jednak wszelkie inne spostrzeżenia byłyby również mile widziane. edytuj: Od kiedy opublikowałem pytanie, …
Uwaga: to pytanie jest repost, ponieważ moje poprzednie pytanie musiało zostać usunięte ze względów prawnych. Porównując PROC MIXED z SAS z funkcją lmez nlmepakietu w R, natknąłem się na pewne dość mylące różnice. Mówiąc dokładniej, stopnie swobody w różnych testach różnią się między PROC MIXEDi lmezastanawiałem się, dlaczego. Zacznij od …
Czy są jakieś dobre artykuły lub książki dotyczące wykorzystania opadania współrzędnych dla L1 (lasso) i / lub regularyzacji elastycznej siatki dla problemów z regresją liniową?
Według odniesień Księga 1 , Księga 2 i papier . Wspomniano, że istnieje równoważność między regresją regulowaną (Ridge, LASSO i Elastic Net) a ich formułami ograniczeń. Patrzyłem również na Cross Validated 1 i Cross Validated 2 , ale nie widzę wyraźnej odpowiedzi pokazującej, że równoważność lub logika. Moje pytanie brzmi …
Mam już pojęcie o zaletach i wadach regresji grzbietu i LASSO. W przypadku LASSO kara karna L1 da rzadki wektor współczynnika, który można postrzegać jako metodę wyboru cech. Istnieją jednak pewne ograniczenia dotyczące LASSO. Jeśli funkcje mają wysoką korelację, LASSO wybierze tylko jedną z nich. Ponadto w przypadku problemów, w …
LASSO i adaptacyjne LASSO to dwie różne rzeczy, prawda? (Dla mnie kary wyglądają inaczej, ale sprawdzam tylko, czy coś przegapiłem). Kiedy ogólnie mówisz o elastycznej siatce, to czy w specjalnym etui LASSO czy adaptacyjnym LASSO? Który robi pakiet glmnet, pod warunkiem, że wybierzesz alpha = 1? Adaptacyjny LASSO działa w …
Czy ktoś próbował sprawdzić, czy dopasowanie modelu elastycznej sieci ElasticNetw scikit-learn w Pythonie i glmnetR do tego samego zestawu danych daje identyczne wyniki arytmetyczne? Eksperymentowałem z wieloma kombinacjami parametrów (ponieważ dwie funkcje różnią się wartościami domyślnymi, które przekazują argumentom), a także skalowaniem danych, ale wydaje się, że nic nie daje …
W kilku odpowiedziach widziałem, jak użytkownicy CrossValidated sugerują OP znaleźć wczesne artykuły na temat Lasso, Ridge i Elastic Net. Dla potomnych, jakie są przełomowe prace na temat Lasso, Ridge i Elastic Net?
Jak mówi tytuł, próbuję powielić wyniki z glmnet linear przy użyciu optymalizatora LBFGS z biblioteki lbfgs. Ten optymalizator pozwala nam dodać termin regulatora L1 bez martwienia się o różnicę, o ile nasza funkcja celu (bez terminu regulatora L1) jest wypukła. Problem regresji liniowej siatki elastycznej w papierze glmnet podaje minβ∈ …
Czytałem ten artykuł dotyczący elastycznej siatki. Mówią, że używają elastycznej siatki, ponieważ jeśli użyjemy tylko Lasso, zwykle wybierany jest tylko jeden predyktor spośród predyktorów, które są wysoce skorelowane. Ale czy nie tego chcemy? Mam na myśli, że ratuje nas przed problemem wielokoliniowości, prawda? Wszelkie sugestie / wyjaśnienia?
Modele ukarane mogą być wykorzystane do oszacowania modeli, w których liczba parametrów jest równa lub nawet większa niż wielkość próbki. Taka sytuacja może wystąpić w logarytmiczno-liniowych modelach dużych rzadkich tabel danych kategorialnych lub zliczających. W tych ustawieniach często jest również pożądane lub pomocne zwijanie tabel poprzez łączenie poziomów czynnika, przy …
Mam więc 16 prób, w których próbuję uwierzytelnić osobę z cechy biometrycznej za pomocą Hamminga. Mój próg jest ustawiony na 3,5. Moje dane są poniżej i tylko próba 1 jest prawdziwie pozytywna: Trial Hamming Distance 1 0.34 2 0.37 3 0.34 4 0.29 5 0.55 6 0.47 7 0.47 8 …
Używamy plików cookie i innych technologii śledzenia w celu poprawy komfortu przeglądania naszej witryny, aby wyświetlać spersonalizowane treści i ukierunkowane reklamy, analizować ruch w naszej witrynie, i zrozumieć, skąd pochodzą nasi goście.
Kontynuując, wyrażasz zgodę na korzystanie z plików cookie i innych technologii śledzenia oraz potwierdzasz, że masz co najmniej 16 lat lub zgodę rodzica lub opiekuna.