Pytania otagowane jako lme4-nlme

lme4 i nlme są pakietami R stosowanymi do dopasowania liniowych, uogólnionych liniowych i nieliniowych modeli efektów mieszanych. W przypadku ogólnych pytań dotyczących modeli mieszanych użyj znacznika [mieszany model].

1
Jak interpretować wariancję efektu losowego w uogólnionym liniowym modelu mieszanym
W logistycznym uogólnionym liniowym modelu mieszanym (rodzina = dwumianowy) nie wiem, jak interpretować wariancję efektów losowych: Random effects: Groups Name Variance Std.Dev. HOSPITAL (Intercept) 0.4295 0.6554 Number of obs: 2275, groups: HOSPITAL, 14 Jak interpretować ten wynik liczbowy? Mam próbkę pacjentów po transplantacji nerki w wieloośrodkowym badaniu. Testowałem, czy prawdopodobieństwo …
9 r  lme4-nlme 

1
test anova typu III dla GLMM
Dopasowuję glmermodel do lme4pakietu R. Szukam tabeli anova z wyświetloną wartością p, ale nie mogę znaleźć pakietu, który by do niej pasował. Czy można to zrobić w R? Model, który dopasowuję, ma postać: model1<-glmer(dmn~period*teethTreated+(1|fullName), family="poisson", data=subset(dataset, group=='Four times a year'), control=glmerControl(optimizer="bobyqa"))

1
Jak porównać obserwowane i oczekiwane zdarzenia?
Załóżmy, że mam jedną próbkę częstotliwości 4 możliwych zdarzeń: Event1 - 5 E2 - 1 E3 - 0 E4 - 12 i mam spodziewane prawdopodobieństwo wystąpienia moich zdarzeń: p1 - 0.2 p2 - 0.1 p3 - 0.1 p4 - 0.6 Dzięki sumie obserwowanych częstotliwości moich czterech zdarzeń (18) mogę obliczyć …
9 r  statistical-significance  chi-squared  multivariate-analysis  exponential  joint-distribution  statistical-significance  self-study  standard-deviation  probability  normal-distribution  spss  interpretation  assumptions  cox-model  reporting  cox-model  statistical-significance  reliability  method-comparison  classification  boosting  ensemble  adaboost  confidence-interval  cross-validation  prediction  prediction-interval  regression  machine-learning  svm  regularization  regression  sampling  survey  probit  matlab  feature-selection  information-theory  mutual-information  time-series  forecasting  simulation  classification  boosting  ensemble  adaboost  normal-distribution  multivariate-analysis  covariance  gini  clustering  text-mining  distance-functions  information-retrieval  similarities  regression  logistic  stata  group-differences  r  anova  confidence-interval  repeated-measures  r  logistic  lme4-nlme  inference  fiducial  kalman-filter  classification  discriminant-analysis  linear-algebra  computing  statistical-significance  time-series  panel-data  missing-data  uncertainty  probability  multivariate-analysis  r  classification  spss  k-means  discriminant-analysis  poisson-distribution  average  r  random-forest  importance  probability  conditional-probability  distributions  standard-deviation  time-series  machine-learning  online  forecasting  r  pca  dataset  data-visualization  bayes  distributions  mathematical-statistics  degrees-of-freedom 


2
Czy poprawnie określam swój model Lmer?
Przeszukałem Google i tę stronę i nadal jestem zdezorientowany co do funkcji lmer w bibliotece lme4. Mam dane zebrane z różnych oddziałów psychiatrycznych, które mają wielopoziomową strukturę. Aby uprościć, wybiorę dwie zmienne poziomu 2 i dwie zmienne poziomu 1, chociaż tak naprawdę mam kilka innych. Poziom 2 - WardSize [jest …

2
Oblicz krzywą ROC dla danych
Mam więc 16 prób, w których próbuję uwierzytelnić osobę z cechy biometrycznej za pomocą Hamminga. Mój próg jest ustawiony na 3,5. Moje dane są poniżej i tylko próba 1 jest prawdziwie pozytywna: Trial Hamming Distance 1 0.34 2 0.37 3 0.34 4 0.29 5 0.55 6 0.47 7 0.47 8 …
9 mathematical-statistics  roc  classification  cross-validation  pac-learning  r  anova  survival  hazard  machine-learning  data-mining  hypothesis-testing  regression  random-variable  non-independent  normal-distribution  approximation  central-limit-theorem  interpolation  splines  distributions  kernel-smoothing  r  data-visualization  ggplot2  distributions  binomial  random-variable  poisson-distribution  simulation  kalman-filter  regression  lasso  regularization  lme4-nlme  model-selection  aic  r  mcmc  dlm  particle-filter  r  panel-data  multilevel-analysis  model-selection  entropy  graphical-model  r  distributions  quantiles  qq-plot  svm  matlab  regression  lasso  regularization  entropy  inference  r  distributions  dataset  algorithms  matrix-decomposition  regression  modeling  interaction  regularization  expected-value  exponential  gamma-distribution  mcmc  gibbs  probability  self-study  normality-assumption  naive-bayes  bayes-optimal-classifier  standard-deviation  classification  optimization  control-chart  engineering-statistics  regression  lasso  regularization  regression  references  lasso  regularization  elastic-net  r  distributions  aggregation  clustering  algorithms  regression  correlation  modeling  distributions  time-series  standard-deviation  goodness-of-fit  hypothesis-testing  statistical-significance  sample  binary-data  estimation  random-variable  interpolation  distributions  probability  chi-squared  predictor  outliers  regression  modeling  interaction 
Korzystając z naszej strony potwierdzasz, że przeczytałeś(-aś) i rozumiesz nasze zasady używania plików cookie i zasady ochrony prywatności.
Licensed under cc by-sa 3.0 with attribution required.