Pytania otagowane jako clustered-standard-errors

4
Standardowe grupowanie błędów w R (ręcznie lub w trybie plm)
Próbuję zrozumieć standardowy błąd „klastrowanie” i sposób wykonania w języku R (w Stacie jest to trywialne). W RI nie udało mi się ani użyć ani plmnapisać własnej funkcji. Użyję diamondsdanych z ggplot2paczki. Potrafię robić stałe efekty z dowolnymi zmiennymi obojętnymi > library(plyr) > library(ggplot2) > library(lmtest) > library(sandwich) > # …

1
Czy stopnie swobody mogą być liczbą niecałkowitą?
Kiedy korzystam z GAM, daje mi resztkowy DF (ostatni wiersz kodu). Co to znaczy? Wychodząc poza przykład GAM, ogólnie, czy liczba stopni swobody może być liczbą niecałkowitą?26.626.626.6 > library(gam) > summary(gam(mpg~lo(wt),data=mtcars)) Call: gam(formula = mpg ~ lo(wt), data = mtcars) Deviance Residuals: Min 1Q Median 3Q Max -4.1470 -1.6217 -0.8971 …
27 r  degrees-of-freedom  gam  machine-learning  pca  lasso  probability  self-study  bootstrap  expected-value  regression  machine-learning  linear-model  probability  simulation  random-generation  machine-learning  distributions  svm  libsvm  classification  pca  multivariate-analysis  feature-selection  archaeology  r  regression  dataset  simulation  r  regression  time-series  forecasting  predictive-models  r  mean  sem  lavaan  machine-learning  regularization  regression  conv-neural-network  convolution  classification  deep-learning  conv-neural-network  regression  categorical-data  econometrics  r  confirmatory-factor  scale-invariance  self-study  unbiased-estimator  mse  regression  residuals  sampling  random-variable  sample  probability  random-variable  convergence  r  survival  weibull  references  autocorrelation  hypothesis-testing  distributions  correlation  regression  statistical-significance  regression-coefficients  univariate  categorical-data  chi-squared  regression  machine-learning  multiple-regression  categorical-data  linear-model  pca  factor-analysis  factor-rotation  classification  scikit-learn  logistic  p-value  regression  panel-data  multilevel-analysis  variance  bootstrap  bias  probability  r  distributions  interquartile  time-series  hypothesis-testing  normal-distribution  normality-assumption  kurtosis  arima  panel-data  stata  clustered-standard-errors  machine-learning  optimization  lasso  multivariate-analysis  ancova  machine-learning  cross-validation 

3
Kiedy stosować stałe efekty w porównaniu do używania klastrowych SE?
Załóżmy, że masz jeden przekrój danych, w którym poszczególne osoby znajdują się w grupach (np. Uczniowie w szkołach) i chcesz oszacować model postaci, w Y_i = a + B*X_iktórej Xwektor cech indywidualnych i astałych jest stały. W takim przypadku załóżmy, że nieobserwowana heterogeniczność między grupami wpływa na twoje oszacowania punktowe …

1
Klastrowe błędy standardowe a modelowanie wielopoziomowe?
Przejrzałem kilka książek (Raudenbush i Bryk, Snijders i Bosker, Gelman & Hill itp.) Oraz kilka artykułów (Gelman, Jusko, Primo i Jacobsmeier itp.), I nadal nie zawinąłem głowy główne różnice między używaniem klastrowanych błędów standardowych i wielopoziomowego modelowania. Rozumiem części, które muszą mieć do czynienia z pytaniem badawczym; istnieją pewne rodzaje …

4
Dokładność maszyny zwiększającej gradient zmniejsza się wraz ze wzrostem liczby iteracji
Eksperymentuję z algorytmem maszyny do zwiększania gradientu za pośrednictwem caretpakietu w R. Korzystając z małego zestawu danych o przyjęciach na studia, uruchomiłem następujący kod: library(caret) ### Load admissions dataset. ### mydata <- read.csv("http://www.ats.ucla.edu/stat/data/binary.csv") ### Create yes/no levels for admission. ### mydata$admit_factor[mydata$admit==0] <- "no" mydata$admit_factor[mydata$admit==1] <- "yes" ### Gradient boosting machine …
15 machine-learning  caret  boosting  gbm  hypothesis-testing  t-test  panel-data  psychometrics  intraclass-correlation  generalized-linear-model  categorical-data  binomial  model  intercept  causality  cross-correlation  distributions  ranks  p-value  z-test  sign-test  time-series  references  terminology  cross-correlation  definition  probability  distributions  beta-distribution  inverse-gamma  missing-data  paired-comparisons  paired-data  clustered-standard-errors  cluster-sample  time-series  arima  logistic  binary-data  odds-ratio  medicine  hypothesis-testing  wilcoxon-mann-whitney  unsupervised-learning  hierarchical-clustering  neural-networks  train  clustering  k-means  regression  ordinal-data  change-scores  machine-learning  experiment-design  roc  precision-recall  auc  stata  multilevel-analysis  regression  fitting  nonlinear  jmp  r  data-visualization  gam  gamm4  r  lme4-nlme  many-categories  regression  causality  instrumental-variables  endogeneity  controlling-for-a-variable 
Korzystając z naszej strony potwierdzasz, że przeczytałeś(-aś) i rozumiesz nasze zasady używania plików cookie i zasady ochrony prywatności.
Licensed under cc by-sa 3.0 with attribution required.