Pytania otagowane jako simulation

Ogromny obszar obejmujący generowanie wyników z modeli komputerowych.


8
Jak symulować dane spełniające określone ograniczenia, takie jak posiadanie określonej średniej i odchylenia standardowego?
To pytanie jest motywowane moim pytaniem dotyczącym metaanalizy . Ale wyobrażam sobie, że przydałoby się to również w nauczaniu kontekstów, w których chcesz utworzyć zestaw danych, który dokładnie odzwierciedla istniejący opublikowany zestaw danych. Wiem, jak generować losowe dane z danej dystrybucji. Na przykład, jeśli przeczytam o wynikach badania, które: średnio …

2
Jak symulować sztuczne dane dla regresji logistycznej?
Wiem, że brakuje mi czegoś w rozumieniu regresji logistycznej i naprawdę doceniłbym każdą pomoc. O ile rozumiem, regresja logistyczna zakłada, że ​​prawdopodobieństwo wyniku „1” przy danych wejściowych jest liniową kombinacją danych wejściowych, przechodzącą przez funkcję odwrotnej logistyki. Jest to zilustrowane w następującym kodzie R: #create data: x1 = rnorm(1000) # …

6
Kiedy stosować symulacje?
To bardzo proste i głupie pytanie. Jednak kiedy byłem w szkole, bardzo mało uwagi poświęciłem całej koncepcji symulacji w klasie, co trochę mnie przeraziło. Czy potrafisz wyjaśnić proces symulacji w kategoriach laików? (może służyć do generowania danych, współczynników regresji itp.) Jakie są praktyczne sytuacje / problemy, kiedy można zastosować symulacje? …
40 simulation 

2
Symulacja analizy mocy regresji logistycznej - zaprojektowane eksperymenty
To pytanie jest odpowiedzią na odpowiedź udzieloną przez @Greg Snow na pytanie, które zadałem, dotyczące analizy mocy z regresją logistyczną i SAS Proc GLMPOWER. Jeśli projektuję eksperyment i przeanalizuję wyniki w silnej regresji logistycznej, jak mogę użyć symulacji (i tutaj ) do przeprowadzenia analizy mocy? Oto prosty przykład, w którym …




1
Czy stopnie swobody mogą być liczbą niecałkowitą?
Kiedy korzystam z GAM, daje mi resztkowy DF (ostatni wiersz kodu). Co to znaczy? Wychodząc poza przykład GAM, ogólnie, czy liczba stopni swobody może być liczbą niecałkowitą?26.626.626.6 > library(gam) > summary(gam(mpg~lo(wt),data=mtcars)) Call: gam(formula = mpg ~ lo(wt), data = mtcars) Deviance Residuals: Min 1Q Median 3Q Max -4.1470 -1.6217 -0.8971 …
27 r  degrees-of-freedom  gam  machine-learning  pca  lasso  probability  self-study  bootstrap  expected-value  regression  machine-learning  linear-model  probability  simulation  random-generation  machine-learning  distributions  svm  libsvm  classification  pca  multivariate-analysis  feature-selection  archaeology  r  regression  dataset  simulation  r  regression  time-series  forecasting  predictive-models  r  mean  sem  lavaan  machine-learning  regularization  regression  conv-neural-network  convolution  classification  deep-learning  conv-neural-network  regression  categorical-data  econometrics  r  confirmatory-factor  scale-invariance  self-study  unbiased-estimator  mse  regression  residuals  sampling  random-variable  sample  probability  random-variable  convergence  r  survival  weibull  references  autocorrelation  hypothesis-testing  distributions  correlation  regression  statistical-significance  regression-coefficients  univariate  categorical-data  chi-squared  regression  machine-learning  multiple-regression  categorical-data  linear-model  pca  factor-analysis  factor-rotation  classification  scikit-learn  logistic  p-value  regression  panel-data  multilevel-analysis  variance  bootstrap  bias  probability  r  distributions  interquartile  time-series  hypothesis-testing  normal-distribution  normality-assumption  kurtosis  arima  panel-data  stata  clustered-standard-errors  machine-learning  optimization  lasso  multivariate-analysis  ancova  machine-learning  cross-validation 


1
Czy można zaufać adaptacyjnej MCMC?
Czytam o adaptacyjnej MCMC (patrz np. Rozdział 4 Podręcznika Markov Chain Monte Carlo , red. Brooks i in., 2011; a także Andrieu i Thoms, 2008 ). Głównym rezultatem Robertsa i Rosenthala (2007) jest to, że jeśli schemat adaptacji spełnia znikający warunek adaptacji (plus pewna inna technika), adaptacyjna MCMC jest ergodyczna …

1
Jak możemy symulować geometryczną mieszaninę?
Jeśli f1,…,fkf1,…,fkf_1,\ldots,f_k są znanymi gęstościami, z których mogę symulować, tj. Dla których dostępny jest algorytm. a jeśli iloczyn ∏i=1kfi(x)αiα1,…,αk>0∏i=1kfi(x)αiα1,…,αk>0\prod_{i=1}^k f_i(x)^{\alpha_i}\qquad \alpha_1,\ldots,\alpha_k>0 jest do zabudowy, istnieje ogólne podejście do symulacji z tego gęstości produktu, stosując symulator zfifif_i „s?

2
Symulowanie szeregów czasowych przy danej mocy i gęstościach widm poprzecznych
Mam problem z wygenerowaniem zestawu stacjonarnych kolorowych szeregów czasowych, biorąc pod uwagę ich macierz kowariancji (ich gęstości widmowe mocy (PSD) i gęstości widmowe mocy krzyżowej (CSD)). Wiem, że biorąc pod uwagę dwie serie czasowe i , mogę oszacować ich gęstość widmową mocy (PSD) i gęstość krzyżową widmową (CSD) przy użyciu …

1
Kiedy należy użyć próbkowania Gibbsa zamiast Metropolis-Hastings?
Istnieją różne rodzaje algorytmów MCMC: Metropolis-Hastings Gibbs Próbkowanie pod kątem ważności / odrzucenia (powiązane). Dlaczego warto korzystać z próbkowania Gibbs zamiast Metropolis-Hastings? Podejrzewam, że zdarzają się przypadki, w których wnioskowanie jest łatwiejsze w przypadku próbkowania Gibbsa niż w przypadku Metropolis-Hastings, ale nie mam jasności co do szczegółów.

3
Rzadkie uprzedzenie regresji logistycznej zdarzenia: jak symulować niedoszacowane wartości p na minimalnym przykładzie?
CrossValidated ma kilka pytań na temat tego, kiedy i jak zastosować korektę błędu rzadkich zdarzeń autorstwa Kinga i Zenga (2001) . Szukam czegoś innego: minimalnej demonstracji opartej na symulacji, że istnieje uprzedzenie. W szczególności państwo King i Zeng „... w danych dotyczących rzadkich zdarzeń tendencje w prawdopodobieństwach mogą mieć istotne …

Korzystając z naszej strony potwierdzasz, że przeczytałeś(-aś) i rozumiesz nasze zasady używania plików cookie i zasady ochrony prywatności.
Licensed under cc by-sa 3.0 with attribution required.