Rozumiem, że stosując podejście bayesowskie do szacowania wartości parametrów: Rozkład tylny jest kombinacją rozkładu wcześniejszego i rozkładu prawdopodobieństwa. Symulujemy to, generując próbkę z rozkładu tylnego (np. Przy użyciu algorytmu Metropolis-Hasting do generowania wartości i akceptujemy je, jeśli przekraczają pewien próg prawdopodobieństwa przynależności do rozkładu tylnego). Po wygenerowaniu tej próbki używamy …
Mam 10 klasę i zamierzam symulować dane dla projektu targów nauki maszynowego. Ostateczny model zostanie zastosowany do danych pacjenta i będzie przewidywał korelację między niektórymi porami tygodnia i wpływ, jaki ma to na przyleganie leku w danych jednego pacjenta. Wartości przylegania będą binarne (0 oznacza, że nie zażyli leku, 1 …
Niektórzy z was mogli przeczytać ten miły artykuł: O'Hara RB, Kotze DJ (2010) Nie log-transform danych zliczania. Metody w ekologii i ewolucji 1: 118–122. klick . W mojej dziedzinie badań (ekotoksykologia) mamy do czynienia ze słabo powielonymi eksperymentami, a GLM nie są szeroko stosowane. Zrobiłem więc podobną symulację jak O'Hara …
Mam dane szeregów czasowych i użyłem jako modelu do dopasowania danych. jest wskaźnikiem zmienną losową, która jest albo 0 (gdy nie widzę rzadkie zdarzenie) lub 1 (gdy widzę rzadkie zjawisko). W oparciu o wcześniejsze obserwacje, które mam dla , mogę opracować model dla przy użyciu metodologii łańcucha Markowa o zmiennej …
To pytanie zwalidowane krzyżowo z pytaniem o symulację próbki uwarunkowanej ustaloną sumą przypomniało mi o problemie postawionym mi przez George'a Casellę . fa(x|θ)f(x|θ)f(x|\theta)(X1,…,Xn)(X1,…,Xn)(X_1,\ldots,X_n)θθ\thetaθ^(x1,…,xn)=argmin∑i=1nlogf(xi|θ)θ^(x1,…,xn)=argmin∑i=1nlogf(xi|θ)\hat{\theta}(x_1,\ldots,x_n)=\arg\min \sum_{i=1}^n \log f(x_i|\theta)θθ\theta θ (X1,...,xn)(X1,…,Xn)(X1,…,Xn)(X_1,\ldots,X_n)θ^(X1,…,Xn)θ^(X1,…,Xn)\hat{\theta}(X_1,\ldots,X_n) Weźmy na przykład rozkład , z parametrem lokalizacji , którego gęstość wynosi If jak możemy symulować uwarunkowane na ? W tym przykładzie …
Muszę wygenerować liczby losowe po rozkładzie normalnym w przedziale (a,b)(a,b)(a,b) . (Pracuję w R.) Wiem, że funkcja rnorm(n,mean,sd)wygeneruje losowe liczby po rozkładzie normalnym, ale jak ustawić limity interwałów w tym zakresie? Czy są do tego dostępne jakieś konkretne funkcje R?
Przeprowadziłem komputerową ocenę różnych metod dopasowania konkretnego typu modelu stosowanego w naukach paleeo. Miałem duży zestaw treningowy, więc losowo (stratyfikowane losowe próbkowanie) odłożyłem zestaw testowy. I przystosowany różnych metod zestawów testowych próbek i za pomocą otrzymanego wzór I przewidzieć odpowiedź dla zestawu testowego do próbki i oblicza się na RMSEP …
Słyszałem, że zgodnie z hipotezą zerową rozkład wartości p powinien być jednolity. Jednak symulacje testu dwumianowego w MATLAB zwracają bardzo różne od jednolitych rozkłady ze średnią większą niż 0,5 (w tym przypadku 0,518): coin = [0 1]; success_vec = nan(20000,1); for i = 1:20000 success = 0; for j = …
Załóżmy, że mam funkcję , którą chcę zintegrować Oczywiście przy założeniu, że osiąga zero w punktach końcowych, brak wybuchów, fajna funkcja. Jednym ze sposobów, w jakie się bawiłem, jest użycie algorytmu Metropolis-Hastings do wygenerowania listy próbek z rozkładu proporcjonalnego do , w którym brakuje stałej normalizacyjnej który , a następnie …
Przybliżone obliczenia bayesowskie to naprawdę fajna technika dopasowania w zasadzie dowolnego modelu stochastycznego, przeznaczona dla modeli, w których prawdopodobieństwo jest trudne (powiedzmy, możesz próbkować z modelu, jeśli naprawisz parametry, ale nie możesz obliczyć prawdopodobieństwa numerycznie, algorytmicznie lub analitycznie ). Wprowadzając publiczność w przybliżeniu obliczenia bayesowskie (ABC), dobrze jest użyć przykładowego …
Załóżmy, że mam dwa jednoznaczne rozkłady krańcowe, powiedzmy i , z których mogę symulować. Teraz skonstruuj ich wspólny rozkład za pomocą kopuły Gaussa , oznaczonej jako . Wszystkie parametry są znane.FFFGGGC(F,G;Σ)C(F,G;Σ)C(F,G;\Sigma) Czy istnieje metoda inna niż MCMC do symulacji z tej kopuły?
De novo symulacja danych z eksperymentalnej ramki danych projektowych. Z naciskiem na R (choć inne rozwiązanie językowe byłoby świetne). Podczas projektowania eksperymentu lub ankiety symulowanie danych i przeprowadzanie analizy tych symulowanych danych może zapewnić świetny wgląd w zalety i wady projektu. Takie podejście może być również niezbędne do zrozumienia i …
Aby zasymulować rozkład normalny z zestawu zmiennych jednorodnych, istnieje kilka technik: Algorytm Boxa-Mullera , w którym jeden próbkuje dwa niezależne jednolite zmienia się na (0,1)(0,1)(0,1) i przekształca je w dwa niezależne standardowe rozkłady normalne poprzez: Z0=−2lnU1−−−−−−√cos(2πU0)Z1=−2lnU1−−−−−−√sin(2πU0)Z0=−2lnU1cos(2πU0)Z1=−2lnU1sin(2πU0) Z_0 = \sqrt{-2\text{ln}U_1}\text{cos}(2\pi U_0)\\ Z_1 = \sqrt{-2\text{ln}U_1}\text{sin}(2\pi U_0) metoda CDF , w której można …
Niedawno kupiłem zasób wywiadu danych, w którym jedno z pytań prawdopodobieństwa było następujące: Biorąc pod uwagę losowania z rozkładu normalnego o znanych parametrach, jak można symulować losowania z rozkładu jednolitego? Mój pierwotny proces myślowy polegał na tym, że dla dyskretnej zmiennej losowej możemy rozbić rozkład normalny na K unikalnych podsekcji, …
Używamy plików cookie i innych technologii śledzenia w celu poprawy komfortu przeglądania naszej witryny, aby wyświetlać spersonalizowane treści i ukierunkowane reklamy, analizować ruch w naszej witrynie, i zrozumieć, skąd pochodzą nasi goście.
Kontynuując, wyrażasz zgodę na korzystanie z plików cookie i innych technologii śledzenia oraz potwierdzasz, że masz co najmniej 16 lat lub zgodę rodzica lub opiekuna.