Pytania otagowane jako monte-carlo

Używanie (pseudo-) liczb losowych i prawa dużych liczb do symulacji losowego zachowania prawdziwego systemu.

1
Jak określić znaczące główne komponenty za pomocą ładowania początkowego lub podejścia Monte Carlo?
Interesuje mnie określenie liczby znaczących wzorców pochodzących z analizy głównych składników (PCA) lub analizy empirycznej funkcji ortogonalnej (EOF). Jestem szczególnie zainteresowany zastosowaniem tej metody do danych klimatycznych. Pole danych jest macierzą MxN, gdzie M jest wymiarem czasowym (np. Dni), a N jest wymiarem przestrzennym (np. Lokalizacje lon / lat). Czytałem …
40 r  pca  bootstrap  monte-carlo 


1
Jaka jest różnica między próbkowaniem Metropolis Hastings, Gibbs, Znaczenie i odrzuceniem?
Próbowałem nauczyć się metod MCMC i natknąłem się na próbkowanie Metropolis Hastings, Gibbs, Ważność i Odrzucenie. Chociaż niektóre z tych różnic są oczywiste, tj. Jak Gibbs jest szczególnym przypadkiem Metropolis Hastings, gdy mamy pełne warunki warunkowe, inne są mniej oczywiste, na przykład gdy chcemy użyć MH w próbniku Gibbs itp. …




3
K-fold vs. walidacja krzyżowa Monte Carlo
Próbuję poznać różne metody walidacji krzyżowej, przede wszystkim z zamiarem zastosowania do nadzorowanych technik analizy wielowymiarowej. Dwa, z którymi się spotkałem, to techniki K-fold i Monte Carlo. Czytałem, że K-fold jest odmianą Monte Carlo, ale nie jestem pewien, czy w pełni rozumiem, co składa się na definicję Monte Carlo. Czy …



4
Czy można wykorzystać algorytmy uczenia maszynowego lub uczenia głębokiego do „usprawnienia” procesu próbkowania techniki MCMC?
Opierając się na małej wiedzy, którą mam na temat metod MCMC (łańcuch Markowa Monte Carlo), rozumiem, że pobieranie próbek jest kluczową częścią wyżej wspomnianej techniki. Najczęściej stosowanymi metodami próbkowania są Hamiltonian i Metropolis. Czy istnieje sposób wykorzystania uczenia maszynowego, a nawet uczenia głębokiego w celu stworzenia bardziej wydajnego samplera MCMC?

4
Jak rzutować nowy wektor na przestrzeń PCA?
Po przeprowadzeniu analizy głównego składnika (PCA) chcę rzutować nowy wektor na przestrzeń PCA (tzn. Znaleźć jego współrzędne w układzie współrzędnych PCA). Mam obliczony PCA w języku R użyciu prcomp. Teraz powinienem być w stanie pomnożyć mój wektor przez macierz obrotu PCA. Czy główne elementy tej macierzy powinny być ułożone w …
21 r  pca  r  variance  heteroscedasticity  misspecification  distributions  time-series  data-visualization  modeling  histogram  kolmogorov-smirnov  negative-binomial  likelihood-ratio  econometrics  panel-data  categorical-data  scales  survey  distributions  pdf  histogram  correlation  algorithms  r  gpu  parallel-computing  approximation  mean  median  references  sample-size  normality-assumption  central-limit-theorem  rule-of-thumb  confidence-interval  estimation  mixed-model  psychometrics  random-effects-model  hypothesis-testing  sample-size  dataset  large-data  regression  standard-deviation  variance  approximation  hypothesis-testing  variance  central-limit-theorem  kernel-trick  kernel-smoothing  error  sampling  hypothesis-testing  normality-assumption  philosophical  confidence-interval  modeling  model-selection  experiment-design  hypothesis-testing  statistical-significance  power  asymptotics  information-retrieval  anova  multiple-comparisons  ancova  classification  clustering  factor-analysis  psychometrics  r  sampling  expectation-maximization  markov-process  r  data-visualization  correlation  regression  statistical-significance  degrees-of-freedom  experiment-design  r  regression  curve-fitting  change-point  loess  machine-learning  classification  self-study  monte-carlo  markov-process  references  mathematical-statistics  data-visualization  python  cart  boosting  regression  classification  robust  cart  survey  binomial  psychometrics  likert  psychology  asymptotics  multinomial 

1
Jak możemy symulować geometryczną mieszaninę?
Jeśli f1,…,fkf1,…,fkf_1,\ldots,f_k są znanymi gęstościami, z których mogę symulować, tj. Dla których dostępny jest algorytm. a jeśli iloczyn ∏i=1kfi(x)αiα1,…,αk>0∏i=1kfi(x)αiα1,…,αk>0\prod_{i=1}^k f_i(x)^{\alpha_i}\qquad \alpha_1,\ldots,\alpha_k>0 jest do zabudowy, istnieje ogólne podejście do symulacji z tego gęstości produktu, stosując symulator zfifif_i „s?

1
MCMC w ograniczonej przestrzeni parametrów?
Próbuję zastosować MCMC do problemu, ale moje priorytety (w moim przypadku są to α∈[0,1],β∈[0,1]α∈[0,1],β∈[0,1]\alpha\in[0,1],\beta\in[0,1] )) są ograniczone do obszaru? Czy mogę użyć normalnego MCMC i zignorować próbki, które wypadną poza strefę ograniczoną (która w moim przypadku wynosi [0,1] ^ 2), tj. Funkcja przejścia do ponownego wykorzystania, gdy nowe przejście wypadnie …

2
Czy ktoś może mi wyjaśnić NUTS po angielsku?
Moje rozumienie algorytmu jest następujące: No U-Turn Sampler (NUTS) to hamiltonowska metoda Monte Carlo. Oznacza to, że nie jest to metoda łańcucha Markowa, a zatem algorytm ten omija część chodzenia losowego, która często uważana jest za nieefektywną i powolną do zbieżności. Zamiast wykonywać losowy spacer, NUTS wykonuje skoki o długości …


Korzystając z naszej strony potwierdzasz, że przeczytałeś(-aś) i rozumiesz nasze zasady używania plików cookie i zasady ochrony prywatności.
Licensed under cc by-sa 3.0 with attribution required.