Pytania otagowane jako cross-validation

Wielokrotnie wstrzymywanie podzbiorów danych podczas dopasowywania modelu w celu kwantyfikacji wydajności modelu na wstrzymanych podzbiorach danych.

1
Dlaczego informacje o danych walidacyjnych wyciekają, jeśli oceniam wydajność modelu na danych walidacyjnych podczas strojenia hiperparametrów?
W głębokim nauczaniu François Cholleta w Pythonie napisano: W rezultacie dostrajanie konfiguracji modelu w oparciu o jego wydajność w zestawie sprawdzania poprawności może szybko doprowadzić do nadmiernego dopasowania do zestawu sprawdzania poprawności, nawet jeśli Twój model nigdy nie jest bezpośrednio na nim szkolony. Centralnym elementem tego zjawiska jest pojęcie wycieków …


1
Który model głębokiego uczenia może klasyfikować kategorie, które nie wykluczają się wzajemnie
Przykłady: w opisie stanowiska mam zdanie: „Starszy inżynier Java w Wielkiej Brytanii”. Chcę użyć modelu głębokiego uczenia się, aby przewidzieć go jako 2 kategorie: English i IT jobs. Jeśli użyję tradycyjnego modelu klasyfikacji, może on przewidzieć tylko 1 etykietę z softmaxfunkcją na ostatniej warstwie. Dlatego mogę użyć 2 modelowych sieci …
9 machine-learning  deep-learning  natural-language  tensorflow  sampling  distance  non-independent  application  regression  machine-learning  logistic  mixed-model  control-group  crossover  r  multivariate-analysis  ecology  procrustes-analysis  vegan  regression  hypothesis-testing  interpretation  chi-squared  bootstrap  r  bioinformatics  bayesian  exponential  beta-distribution  bernoulli-distribution  conjugate-prior  distributions  bayesian  prior  beta-distribution  covariance  naive-bayes  smoothing  laplace-smoothing  distributions  data-visualization  regression  probit  penalized  estimation  unbiased-estimator  fisher-information  unbalanced-classes  bayesian  model-selection  aic  multiple-regression  cross-validation  regression-coefficients  nonlinear-regression  standardization  naive-bayes  trend  machine-learning  clustering  unsupervised-learning  wilcoxon-mann-whitney  z-score  econometrics  generalized-moments  method-of-moments  machine-learning  conv-neural-network  image-processing  ocr  machine-learning  neural-networks  conv-neural-network  tensorflow  r  logistic  scoring-rules  probability  self-study  pdf  cdf  classification  svm  resampling  forecasting  rms  volatility-forecasting  diebold-mariano  neural-networks  prediction-interval  uncertainty 

2
Czy rzeczywiście dobrze jest dokonywać wyboru funkcji bez nadzoru przed weryfikacją krzyżową?
W The Elements of Statistics Learning znalazłem następujące stwierdzenie: Istnieje jedna kwalifikacja: wstępne pomiary bez nadzoru można wykonać przed pominięciem próbek. Na przykład, moglibyśmy wybrać 1000 predyktorów o największej wariancji we wszystkich 50 próbkach przed rozpoczęciem walidacji krzyżowej. Ponieważ to filtrowanie nie obejmuje etykiet klas, nie zapewnia nieuczciwej przewagi predyktorom. …

2
Czy zawsze powinniśmy robić CV?
Moje pytanie: czy powinienem zrobić CV nawet dla stosunkowo dużego zbioru danych? Mam stosunkowo duży zestaw danych i zastosuję algorytm uczenia maszynowego do tego zestawu danych. Ponieważ mój komputer nie jest szybki, CV (i wyszukiwanie siatki) zajmuje czasem zbyt dużo czasu. W szczególności SVM nigdy się nie kończy z powodu …

1
Klasyfikatory algebraiczne, więcej informacji?
Przeczytałem klasyfikatory algebraiczne: ogólne podejście do szybkiej walidacji krzyżowej, szkolenia online i szkolenia równoległego i byłem zaskoczony wydajnością algorytmów pochodnych. Wydaje się jednak, że poza Naive Bayes (i GBM) nie ma wielu algorytmów dostosowanych do frameworka. Czy są jakieś inne artykuły, które pracowały nad różnymi klasyfikatorami? (SVM, losowe lasy)

1
Wybór oryginalnego (?) Modelu z k-krotnie CV
Używając k-krotnie CV do wyboru spośród modeli regresji, zwykle obliczam błąd CV osobno dla każdego modelu, wraz z jego standardowym błędem SE, i wybieram najprostszy model w obrębie 1 SE modelu o najniższym błędzie CV (1 standardowa reguła błędu, patrz na przykład tutaj ). Jednak niedawno powiedziano mi, że w …

2
Testy historyczne lub weryfikacja krzyżowa, gdy proces budowania modelu był interaktywny
Mam kilka modeli predykcyjnych, których wydajność chciałbym przetestować ponownie (tj. Zabrać mój zestaw danych, „przewinąć” go do poprzedniego momentu i zobaczyć, jak ten model działałby prospektywnie). Problem polega na tym, że niektóre z moich modeli zostały zbudowane w procesie interaktywnym. Na przykład, zgodnie z zaleceniami Strategii modelowania regresji Franka Harrella …

2
Oszacowanie błędu braku worka do zwiększenia?
W Random Forest każde drzewo jest uprawiane równolegle na unikalnej próbce danych doładowania. Ponieważ oczekuje się, że każda próbka przypominająca zawiera około 63% unikalnych obserwacji, pozostawia to około 37% obserwacji, które można wykorzystać do testowania drzewa. Teraz wydaje się, że w Stochastic Gradient Boosting istnieje również OOBerrorOOBerrorOOB_{error} oszacowanie podobne do …

3
Walidacja krzyżowa K-hold lub hold-out dla regresji grzbietu za pomocą R.
Pracuję nad weryfikacją krzyżową prognoz moich danych z 200 podmiotami i 1000 zmiennymi. Interesuje mnie regresja grzbietu, ponieważ liczba zmiennych (chcę użyć) jest większa niż liczba próbek. Więc chcę użyć estymatorów skurczu. Oto przykładowe dane: #random population of 200 subjects with 1000 variables M <- matrix(rep(0,200*100),200,1000) for (i in 1:200) …

2
Jak znaleźć optymalne wartości parametrów dostrajania w drzewach wzmacniających?
Zdaję sobie sprawę, że w modelu drzew przypominających są 3 parametry dostrajania, tj liczba drzew (liczba iteracji) parametr skurczu liczba podziałów (wielkość każdego drzewa składowego) Moje pytanie brzmi: jak dla każdego parametru dostrajania znaleźć optymalną wartość? I jaką metodę? Zauważ, że: parametr skurczu i parametr liczby drzew działają razem, tj. …


1
Jak porównać obserwowane i oczekiwane zdarzenia?
Załóżmy, że mam jedną próbkę częstotliwości 4 możliwych zdarzeń: Event1 - 5 E2 - 1 E3 - 0 E4 - 12 i mam spodziewane prawdopodobieństwo wystąpienia moich zdarzeń: p1 - 0.2 p2 - 0.1 p3 - 0.1 p4 - 0.6 Dzięki sumie obserwowanych częstotliwości moich czterech zdarzeń (18) mogę obliczyć …
9 r  statistical-significance  chi-squared  multivariate-analysis  exponential  joint-distribution  statistical-significance  self-study  standard-deviation  probability  normal-distribution  spss  interpretation  assumptions  cox-model  reporting  cox-model  statistical-significance  reliability  method-comparison  classification  boosting  ensemble  adaboost  confidence-interval  cross-validation  prediction  prediction-interval  regression  machine-learning  svm  regularization  regression  sampling  survey  probit  matlab  feature-selection  information-theory  mutual-information  time-series  forecasting  simulation  classification  boosting  ensemble  adaboost  normal-distribution  multivariate-analysis  covariance  gini  clustering  text-mining  distance-functions  information-retrieval  similarities  regression  logistic  stata  group-differences  r  anova  confidence-interval  repeated-measures  r  logistic  lme4-nlme  inference  fiducial  kalman-filter  classification  discriminant-analysis  linear-algebra  computing  statistical-significance  time-series  panel-data  missing-data  uncertainty  probability  multivariate-analysis  r  classification  spss  k-means  discriminant-analysis  poisson-distribution  average  r  random-forest  importance  probability  conditional-probability  distributions  standard-deviation  time-series  machine-learning  online  forecasting  r  pca  dataset  data-visualization  bayes  distributions  mathematical-statistics  degrees-of-freedom 


2
Cross Validation dla modeli mieszanych?
Mój kolega i ja dopasowujemy zakres liniowych i nieliniowych modeli efektu mieszanego w R. Jesteśmy proszeni o przeprowadzenie weryfikacji krzyżowej dopasowanych modeli, aby można było zweryfikować, czy zaobserwowane efekty są względnie ogólne. Zwykle jest to trywialne zadanie, ale w naszym przypadku musimy podzielić całe dane na część szkoleniową i część …

Korzystając z naszej strony potwierdzasz, że przeczytałeś(-aś) i rozumiesz nasze zasady używania plików cookie i zasady ochrony prywatności.
Licensed under cc by-sa 3.0 with attribution required.