Mam GLMM w postaci: lmer(present? ~ factor1 + factor2 + continuous + factor1*continuous + (1 | factor3), family=binomial) Kiedy używam drop1(model, test="Chi"), otrzymuję inne wyniki niż w przypadku korzystania Anova(model, type="III")z pakietu samochodowego lub summary(model). Te dwa ostatnie dają te same odpowiedzi. Korzystając z wielu sfabrykowanych danych, odkryłem, że te …
Model regresji Poissona napompowany zerem jest definiowany dla próbki przez Y i = { 0 z prawdopodobieństwem p i + ( 1 - p i ) e - λ i k z prawdopodobieństwem ( 1 - p i ) e - λ i λ k i / k ! i …
Załóżmy, że obserwuję iid i chcę przetestować H 0 : A vech ( Σ - 1 ) = a dla zgodnej macierzy A i wektora a . Czy znane są prace nad tym problemem?xja∼ N.( μ , Σ )xi∼N(μ,Σ)x_i \sim \mathcal{N}\left(\mu,\Sigma\right)H.0: A H0:A H_0: A\ ( Σ- 1) =a(Σ−1)=a\left(\Sigma^{-1}\right) = …
W latach szkolnych i na uniwersytecie miałem wystarczająco dużo kursów statystyki. Dobrze rozumiem pojęcia, takie jak CI, wartości p, interpretacja istotności statystycznej, testowanie wielokrotne, korelacja, prosta regresja liniowa (z najmniejszymi kwadratami) (ogólne modele liniowe) i wszystkie testy hipotezy. Poznałem go w większości wcześniejszych czasów głównie matematycznie. I ostatnio, dzięki książce …
Testy Wald, iloraz wiarygodności i mnożnik Lagrange'a w kontekście szacowania maksymalnego prawdopodobieństwa są asymptotycznie równoważne. Jednak w przypadku małych próbek mają one tendencję do rozbieżności, a w niektórych przypadkach prowadzą do różnych wniosków. Jak można je uszeregować według prawdopodobieństwa odrzucenia wartości zerowej? Co zrobić, gdy testy mają sprzeczne odpowiedzi? Czy …
Pacjent zostaje przyjęty do szpitala. Ich długość pobytu zależy od 2 rzeczy: ciężkości urazu i wysokości ubezpieczenia, jaką jest skłonny zapłacić, aby zatrzymać je w szpitalu. Niektórzy pacjenci odejdą przedwcześnie, jeśli ich ubezpieczenie zdecyduje się przestać płacić za pobyt. Załóż, że: 1) Długość pobytu jest rozłożona poissonem (załóżmy, że może …
Moje pytanie wynika z przeczytania „Szacowania rozkładu Dirichleta” Minki , który stwierdza bez dowodu w kontekście wyprowadzenia estymatora największego prawdopodobieństwa dla rozkładu Dirichleta na podstawie obserwacji losowych wektorów: Jak zawsze w przypadku rodziny wykładniczej, gdy gradient wynosi zero, oczekiwane wystarczające statystyki są równe zaobserwowanym wystarczającym statystykom. Nie widziałem oszacowania maksymalnego …
Chciałbym zrozumieć kilka faktów dotyczących estymatorów maksymalnego prawdopodobieństwa (MLE) dla regresji logistycznych. Czy to prawda, że ogólnie MLE regresji logistycznej jest stronniczy? Powiedziałbym tak". Wiem na przykład, że wymiar próbki jest związany z asymptotycznym nastawieniem MLE. Czy znasz jakieś podstawowe przykłady tego zjawiska? Jeśli MLE jest stronniczy, czy prawdą jest, …
Rozważmy Bayesa posterior . Asymptotycznie, jego maksimum występuje przy oszacowaniu MLE , co tylko maksymalizuje prawdopodobieństwo .θ ∣ Xθ∣X\theta\mid Xθ^θ^\hat \thetaargminθfaθ( X)argminθfθ(X)\operatorname{argmin}_\theta\, f_\theta(X) Wszystkie te koncepcje - priory bayesowskie, maksymalizujące prawdopodobieństwo - brzmią bardzo pryncypialnie i wcale nie są arbitralne. W polu widzenia nie ma logów. Jednak MLE minimalizuje rozbieżność …
Casella i Berger podają właściwość niezmienniczości estymatora ML w następujący sposób: Wydaje mi się jednak, że określają „prawdopodobieństwo” ηη\eta w całkowicie doraźny i bezsensowny sposób: Jeśli zastosuję podstawowe zasady teorii prawdopodobieństwa do prostego przypadku, gdzieś η=τ(θ)=θ2η=τ(θ)=θ2\eta=\tau(\theta)=\theta^2Zamiast tego otrzymuję następujące informacje: L(η|x)=p(x|θ2=η)=p(x|θ=−η–√∨θ=η–√)=:p(x|A∨B)L(η|x)=p(x|θ2=η)=p(x|θ=−η∨θ=η)=:p(x|A∨B)L(\eta|x)=p(x|\theta^2=\eta)=p(x|\theta = -\sqrt \eta \lor \theta = \sqrt \eta)=:p(x|A \lor …
Hastie i Tibshirani wspominają w rozdziale 4.3.2 swojej książki, że w regresji liniowej podejście metodą najmniejszych kwadratów jest w rzeczywistości szczególnym przypadkiem maksymalnego prawdopodobieństwa. Jak możemy udowodnić ten wynik? PS: Nie oszczędzaj żadnych szczegółów matematycznych.
Pytanie oparte jest na pracy zatytułowanej: Rekonstrukcja obrazu w rozproszonej tomografii optycznej z wykorzystaniem sprzężonego radiacyjnego modelu transportowo-dyfuzyjnego Link do pobrania Autorzy stosują algorytm EM z rzadkości nieznanego wektora celu oszacowania pikseli obrazu. Model podajel1l1l_1μμ\mu y=Aμ+e(1)(1)y=Aμ+ey=A\mu + e \tag{1} Oszacowanie podano w równaniu (8) as μ^=argmaxlnp(y|μ)+γlnp(μ)(2)(2)μ^=argmaxlnp(y|μ)+γlnp(μ)\hat{\mu} = \arg max {\ln …
Przeczytałem w książce dotyczącej uczenia maszynowego, że parametry regresji liniowej można oszacować (między innymi metodami) za pomocą spadku gradientu, podczas gdy parametry regresji logistycznej są zwykle szacowane przez oszacowanie maksymalnego prawdopodobieństwa. Czy można wyjaśnić nowicjuszowi (mi), dlaczego potrzebujemy różnych metod regresji liniowej / logistycznej. alias dlaczego nie MLE dla regresji …
Mam model mieszanki, w którym chcę znaleźć estymator maksymalnego prawdopodobieństwa dla danego zestawu danych i zestawu częściowo zaobserwowanych danych . I realizowane zarówno E etapie (obliczenie oczekiwania dane i aktualnych parametrów ), i M-etapie, w celu zminimalizowania negatywnych log-Likelihood względu na spodziewany .xxxzzzzzzxxxθkθk\theta^kzzz Jak rozumiem, maksymalne prawdopodobieństwo wzrasta z każdą …
W filogenetyce drzewa filogenetyczne są często konstruowane przy użyciu analizy MLE lub analizy bayesowskiej. W szacunkach bayesowskich często stosuje się płaski przeor. Jak rozumiem, oszacowanie bayesowskie jest oszacowaniem prawdopodobieństwa, które obejmuje uprzednie. Moje pytanie brzmi: jeśli użyjesz mieszkania wcześniej, czy różni się to od zwykłej analizy prawdopodobieństwa?
Używamy plików cookie i innych technologii śledzenia w celu poprawy komfortu przeglądania naszej witryny, aby wyświetlać spersonalizowane treści i ukierunkowane reklamy, analizować ruch w naszej witrynie, i zrozumieć, skąd pochodzą nasi goście.
Kontynuując, wyrażasz zgodę na korzystanie z plików cookie i innych technologii śledzenia oraz potwierdzasz, że masz co najmniej 16 lat lub zgodę rodzica lub opiekuna.