Pytania otagowane jako random-effects-model

Parametry związane z poszczególnymi poziomami zmiennych towarzyszących są czasami nazywane „efektami” poziomów. Jeśli zaobserwowane poziomy reprezentują losową próbkę ze zbioru wszystkich możliwych poziomów, efekty te nazywamy „losowymi”.


3
Ściąglejszy ściągacz R.
Na tym forum toczy się wiele dyskusji na temat właściwego sposobu określania różnych modeli hierarchicznych lmer. Pomyślałem, że wspaniale byłoby mieć wszystkie informacje w jednym miejscu. Kilka pytań na początek: Jak określić wiele poziomów, gdzie jedna grupa jest zagnieżdżony w drugiej: jest to (1|group1:group2)albo (1+group1|group2)? Jaka jest różnica między (~1 …

3
Pytania dotyczące sposobu określania efektów losowych w lmer
Niedawno zmierzyłem, w jaki sposób znaczenie nowego słowa jest uzyskiwane na podstawie wielokrotnych ekspozycji (ćwiczenie: od 1 do 10 dnia) poprzez pomiar ERP (EEG), gdy słowo było oglądane w różnych kontekstach. Kontrolowałem także właściwości kontekstu, na przykład jego przydatność do odkrywania nowego znaczenia słowa (wysoki kontra niski). Szczególnie interesuje mnie …

2
Jaka jest różnica między efektami losowymi, stałymi i marginalnymi?
Staram się poszerzyć swoją wiedzę na temat statystyki. Pochodzę z nauk fizycznych z podejściem opartym na „recepturze” do testowania statystycznego, gdzie, jak mówimy, jest ciągły, czy jest normalnie rozproszony - regresja OLS . W swoim czytaniu natrafiłem na pojęcia: model efektów losowych, model efektów stałych, model marginalny. Moje pytania to: …



5
Modelowanie danych podłużnych, w których wpływ czasu zmienia się w formie funkcjonalnej między poszczególnymi osobami
Kontekst : Wyobraź sobie, że miałeś badanie podłużne, w którym mierzono zmienną zależną (DV) raz w tygodniu przez 20 tygodni na 200 uczestnikach. Chociaż ogólnie interesuje mnie, typowe DV, o których myślę, obejmują wyniki pracy po zatrudnieniu lub różne środki dobrostanu po interwencji psychologii klinicznej. Wiem, że modelowanie wielopoziomowe może …

2
W modelu wielopoziomowym, jakie są praktyczne implikacje oszacowania w porównaniu z niedoszacowaniem parametrów korelacji efektu losowego?
W modelu wielopoziomowym, jakie są praktyczne i związane z interpretacją implikacje oszacowania w porównaniu z niedoszacowaniem parametrów korelacji efektu losowego? Praktycznym powodem pytania jest to, że w ramce Lmer w R nie ma zaimplementowanej metody szacowania wartości p za pomocą technik MCMC, gdy dokonuje się szacunków w modelu korelacji między …



5
Jaka jest zaleta traktowania czynnika jako losowego w modelu mieszanym?
Mam problem z uznaniem korzyści oznaczania czynnika modelowego za losowy z kilku powodów. Wydaje mi się, że prawie we wszystkich przypadkach optymalnym rozwiązaniem jest traktowanie wszystkich czynników jako ustalonych. Po pierwsze, rozróżnienie między ustalonym a losowym jest dość arbitralne. Standardowe wyjaśnienie jest takie, że jeśli ktoś interesuje się konkretnymi jednostkami …


4
Jak rzutować nowy wektor na przestrzeń PCA?
Po przeprowadzeniu analizy głównego składnika (PCA) chcę rzutować nowy wektor na przestrzeń PCA (tzn. Znaleźć jego współrzędne w układzie współrzędnych PCA). Mam obliczony PCA w języku R użyciu prcomp. Teraz powinienem być w stanie pomnożyć mój wektor przez macierz obrotu PCA. Czy główne elementy tej macierzy powinny być ułożone w …
21 r  pca  r  variance  heteroscedasticity  misspecification  distributions  time-series  data-visualization  modeling  histogram  kolmogorov-smirnov  negative-binomial  likelihood-ratio  econometrics  panel-data  categorical-data  scales  survey  distributions  pdf  histogram  correlation  algorithms  r  gpu  parallel-computing  approximation  mean  median  references  sample-size  normality-assumption  central-limit-theorem  rule-of-thumb  confidence-interval  estimation  mixed-model  psychometrics  random-effects-model  hypothesis-testing  sample-size  dataset  large-data  regression  standard-deviation  variance  approximation  hypothesis-testing  variance  central-limit-theorem  kernel-trick  kernel-smoothing  error  sampling  hypothesis-testing  normality-assumption  philosophical  confidence-interval  modeling  model-selection  experiment-design  hypothesis-testing  statistical-significance  power  asymptotics  information-retrieval  anova  multiple-comparisons  ancova  classification  clustering  factor-analysis  psychometrics  r  sampling  expectation-maximization  markov-process  r  data-visualization  correlation  regression  statistical-significance  degrees-of-freedom  experiment-design  r  regression  curve-fitting  change-point  loess  machine-learning  classification  self-study  monte-carlo  markov-process  references  mathematical-statistics  data-visualization  python  cart  boosting  regression  classification  robust  cart  survey  binomial  psychometrics  likert  psychology  asymptotics  multinomial 

4
W praktyce, jak oblicza się macierz kowariancji efektów losowych w modelu efektów mieszanych?
Zasadniczo zastanawiam się, w jaki sposób wymuszane są różne struktury kowariancji i jak obliczane są wartości w tych macierzach. Funkcje takie jak lme () pozwalają nam wybrać, którą strukturę chcielibyśmy, ale chciałbym wiedzieć, jak są szacowane. Rozważ liniowy model efektów mieszanych .Y=Xβ+Zu+ϵY=Xβ+Zu+ϵY=X\beta+Zu+\epsilon Gdzie i . Ponadto:u∼dN(0,D)u∼dN(0,D)u \stackrel{d}{\sim} N(0,D)ϵ∼dN(0,R)ϵ∼dN(0,R)\epsilon \stackrel{d}{\sim} N(0,R) …

2
Duża różnica zdań w oszacowaniu nachylenia, gdy grupy są traktowane jako losowe vs. ustalone w modelu mieszanym
Rozumiem, że używamy modeli efektów losowych (lub efektów mieszanych), gdy uważamy, że niektóre parametry modelu zmieniają się losowo w zależności od czynnika grupującego. Chcę dopasować model, w którym odpowiedź została znormalizowana i wyśrodkowana (nie idealnie, ale całkiem blisko) w obrębie czynnika grupującego, ale zmienna niezależna xnie została w żaden sposób …

Korzystając z naszej strony potwierdzasz, że przeczytałeś(-aś) i rozumiesz nasze zasady używania plików cookie i zasady ochrony prywatności.
Licensed under cc by-sa 3.0 with attribution required.