Pytania otagowane jako predictive-models

Modele predykcyjne to modele statystyczne, których głównym celem jest optymalne przewidywanie innych obserwacji systemu, w przeciwieństwie do modeli, których celem jest sprawdzenie konkretnej hipotezy lub wyjaśnienie zjawiska mechanicznie. Jako takie, modele predykcyjne kładą mniejszy nacisk na interpretację, a większy nacisk na wydajność.




8
Wygeneruj zmienną losową ze zdefiniowaną korelacją z istniejącą zmienną (zmiennymi)
Dla badań symulacyjnych mam do generowania zmiennych losowych, które wykazują prefined (populacji) korelację do istniejącej zmiennej .YYY I spojrzał w Ropakowaniach copula, a CDVinektóre mogą powodować przypadkowe wielowymiarowych rozkładów danej struktury zależności. Nie można jednak naprawić jednej z powstałych zmiennych do istniejącej zmiennej. Wszelkie pomysły i linki do istniejących funkcji …

15
Praktyczne przemyślenia na temat modelowania objaśniającego vs. predykcyjnego
W kwietniu uczestniczyłem w przemówieniu na cyklicznym seminarium grupowym UMD Math Department Statistics zatytułowanym „Wyjaśnić czy przewidzieć?”. Rozmowę wygłosił prof. Galit Shmueli, który wykłada w Smith Business School w UMD. Jej przemówienie opierało się na badaniach, które przeprowadziła dla artykułu zatytułowanego „Modelowanie predykcyjne vs. model wyjaśniający w badaniach IS” oraz …

8
Jak mogę pomóc upewnić się, że dane testowe nie przeciekają do danych szkoleniowych?
Załóżmy, że mamy kogoś, kto buduje model predykcyjny, ale ten ktoś niekoniecznie jest dobrze obeznany z właściwymi zasadami statystyki lub uczenia maszynowego. Może pomagamy tej osobie w trakcie nauki, a może ta osoba korzysta z pakietu oprogramowania, który wymaga minimalnej wiedzy. Teraz ta osoba może bardzo dobrze rozpoznać, że prawdziwy …


6
Alternatywy dla regresji logistycznej w R.
Chciałbym mieć tyle algorytmów, które wykonują to samo zadanie, co regresja logistyczna. To są algorytmy / modele, które mogą przewidywać odpowiedź binarną (Y) za pomocą zmiennej objaśniającej (X). Byłbym zadowolony, jeśli po nazwiesz algorytm, pokażesz również, jak go zaimplementować w R. Oto kod, który można zaktualizować za pomocą innych modeli: …

5
Czy dostosowanie wartości p w regresji wielokrotnej w celu wielokrotnych porównań jest dobrym pomysłem?
Załóżmy, że jesteś badaczem nauk społecznych / ekonometrycznym próbującym znaleźć odpowiednie predyktory zapotrzebowania na usługę. Masz 2 zmienne wynikowe / zależne opisujące zapotrzebowanie (za pomocą usługi tak / nie i liczby okazji). Masz 10 zmiennych predykcyjnych / niezależnych, które mogłyby teoretycznie wyjaśnić popyt (np. Wiek, płeć, dochód, cena, rasę itp.). …

5
Kiedy niezrównoważone dane naprawdę stanowią problem w uczeniu maszynowym?
Mieliśmy już wiele pytań na temat niezrównoważonych danych podczas korzystania z regresji logistycznej , SVM , drzew decyzyjnych , tworzenia worków i wielu innych podobnych pytań, co sprawia, że ​​jest to bardzo popularny temat! Niestety, każde z pytań wydaje się być specyficzne dla algorytmu i nie znalazłem żadnych ogólnych wskazówek …

3
Interpretacja predyktora i / lub odpowiedzi transformowanej logarytmicznie
Zastanawiam się, czy ma to znaczenie w interpretacji, czy transformowane są tylko zmienne zależne, zależne i niezależne, czy tylko zmienne niezależne. Rozważ przypadek log(DV) = Intercept + B1*IV + Error Mogę interpretować IV jako wzrost procentowy, ale jak to się zmienia, kiedy mam log(DV) = Intercept + B1*log(IV) + Error …
46 regression  data-transformation  interpretation  regression-coefficients  logarithm  r  dataset  stata  hypothesis-testing  contingency-tables  hypothesis-testing  statistical-significance  standard-deviation  unbiased-estimator  t-distribution  r  functional-data-analysis  maximum-likelihood  bootstrap  regression  change-point  regression  sas  hypothesis-testing  bayesian  randomness  predictive-models  nonparametric  terminology  parametric  correlation  effect-size  loess  mean  pdf  quantile-function  bioinformatics  regression  terminology  r-squared  pdf  maximum  multivariate-analysis  references  data-visualization  r  pca  r  mixed-model  lme4-nlme  distributions  probability  bayesian  prior  anova  chi-squared  binomial  generalized-linear-model  anova  repeated-measures  t-test  post-hoc  clustering  variance  probability  hypothesis-testing  references  binomial  profile-likelihood  self-study  excel  data-transformation  skewness  distributions  statistical-significance  econometrics  spatial  r  regression  anova  spss  linear-model 

1
Ręcznie obliczone
Wiem, że jest to dość specyficzne Rpytanie, ale mogę myśleć o wariancji proporcji wyjaśnionej, , niepoprawnie. Tutaj idzie.R2R2R^2 Próbuję użyć Rpakietu randomForest. Mam trochę danych treningowych i danych testowych. Po dopasowaniu losowego modelu lasu randomForestfunkcja umożliwia wprowadzenie nowych danych testowych do przetestowania. Następnie podaje procent wariancji wyjaśniony w tych nowych …

3
Wariancja -krotnie szacunki krzyżowej walidacji jako : jaka jest rola „stabilności”?
TL, DR: Wydaje się, że wbrew często powtarzanym zaleceniom, krzyżowa walidacja typu „jeden do jednego” (LOO-CV) - to znaczy,krotnie CV z(liczbą fałdów) równą(liczba obserwacji treningowych) - daje oszacowania błędu uogólnienia, które są najmniej zmienne dla dowolnego, a nie najbardziej zmienne, przy założeniu pewnegowarunku stabilności w modelu / algorytmie, zestawie danych …



Korzystając z naszej strony potwierdzasz, że przeczytałeś(-aś) i rozumiesz nasze zasady używania plików cookie i zasady ochrony prywatności.
Licensed under cc by-sa 3.0 with attribution required.