Pytania otagowane jako gibbs

Próbnik Gibbsa jest prostą formą symulacji Markov Chain Monte Carlo, szeroko stosowanej w statystykach bayesowskich, opartej na próbkowaniu z pełnych rozkładów warunkowych dla każdej zmiennej lub grupy zmiennych. Nazwa pochodzi od metody zastosowanej po raz pierwszy w modelowaniu obrazów Gibbsa przez Gemana i Gemana (1984).

1
Próbkowanie Gibbsa dla modelu Isinga
Pytanie do pracy domowej: Rozważ model 1-d Isinga. Niech . wynosi -1 lub +1x=(x1,...xd)x=(x1,...xd)x = (x_1,...x_d)xixix_i π(x)∝e∑39i=1xixi+1π(x)∝e∑i=139xixi+1\pi(x) \propto e^{\sum_{i=1}^{39}x_ix_{i+1}} Zaprojektuj algorytm próbkowania Gibbs do generowania próbek w przybliżeniu z rozkładu docelowego .π(x)π(x)\pi(x) Moja próba: Losowo wybierz wartości (-1 lub 1), aby wypełnić wektor . Więc może . To jest .x=(x1,...x40)x=(x1,...x40)x …


2
Zamieszanie związane z próbkowaniem Gibbsa
Natknąłem się na ten artykuł, w którym napisano, że w próbkowaniu Gibbsa każda próbka jest akceptowana. Jestem trochę zmieszany. Jak to możliwe, że jeśli każda zaakceptowana próbka zbiega się w rozkład stacjonarny. Ogólnie algorytm metropolii akceptujemy jako min (1, p (x *) / p (x)), gdzie x * jest punktem …

2
Oblicz krzywą ROC dla danych
Mam więc 16 prób, w których próbuję uwierzytelnić osobę z cechy biometrycznej za pomocą Hamminga. Mój próg jest ustawiony na 3,5. Moje dane są poniżej i tylko próba 1 jest prawdziwie pozytywna: Trial Hamming Distance 1 0.34 2 0.37 3 0.34 4 0.29 5 0.55 6 0.47 7 0.47 8 …
9 mathematical-statistics  roc  classification  cross-validation  pac-learning  r  anova  survival  hazard  machine-learning  data-mining  hypothesis-testing  regression  random-variable  non-independent  normal-distribution  approximation  central-limit-theorem  interpolation  splines  distributions  kernel-smoothing  r  data-visualization  ggplot2  distributions  binomial  random-variable  poisson-distribution  simulation  kalman-filter  regression  lasso  regularization  lme4-nlme  model-selection  aic  r  mcmc  dlm  particle-filter  r  panel-data  multilevel-analysis  model-selection  entropy  graphical-model  r  distributions  quantiles  qq-plot  svm  matlab  regression  lasso  regularization  entropy  inference  r  distributions  dataset  algorithms  matrix-decomposition  regression  modeling  interaction  regularization  expected-value  exponential  gamma-distribution  mcmc  gibbs  probability  self-study  normality-assumption  naive-bayes  bayes-optimal-classifier  standard-deviation  classification  optimization  control-chart  engineering-statistics  regression  lasso  regularization  regression  references  lasso  regularization  elastic-net  r  distributions  aggregation  clustering  algorithms  regression  correlation  modeling  distributions  time-series  standard-deviation  goodness-of-fit  hypothesis-testing  statistical-significance  sample  binary-data  estimation  random-variable  interpolation  distributions  probability  chi-squared  predictor  outliers  regression  modeling  interaction 

1
Czy mogę podpróbkować duży zestaw danych przy każdej iteracji MCMC?
Problem: Chcę wykonać próbkowanie Gibbsa, aby wywnioskować trochę z tyłu na podstawie dużego zestawu danych. Niestety mój model nie jest bardzo prosty, dlatego próbkowanie jest zbyt wolne. Rozważałbym podejścia wariacyjne lub równoległe, ale zanim przejdę tak daleko ... Pytanie: Chciałbym wiedzieć, czy mógłbym losowo próbować (z zastępstwem) z mojego zbioru …
Korzystając z naszej strony potwierdzasz, że przeczytałeś(-aś) i rozumiesz nasze zasady używania plików cookie i zasady ochrony prywatności.
Licensed under cc by-sa 3.0 with attribution required.