Pytania otagowane jako errors-in-variables

5
Jak radzić sobie z hierarchicznymi / zagnieżdżonymi danymi w uczeniu maszynowym
Wyjaśnię mój problem na przykładzie. Załóżmy, że chcesz przewidzieć dochód danej osoby na podstawie niektórych atrybutów: {Wiek, płeć, kraj, region, miasto}. Masz taki zestaw danych szkoleniowych train <- data.frame(CountryID=c(1,1,1,1, 2,2,2,2, 3,3,3,3), RegionID=c(1,1,1,2, 3,3,4,4, 5,5,5,5), CityID=c(1,1,2,3, 4,5,6,6, 7,7,7,8), Age=c(23,48,62,63, 25,41,45,19, 37,41,31,50), Gender=factor(c("M","F","M","F", "M","F","M","F", "F","F","F","M")), Income=c(31,42,71,65, 50,51,101,38, 47,50,55,23)) train CountryID RegionID CityID …
29 regression  machine-learning  multilevel-analysis  correlation  dataset  spatial  paired-comparisons  cross-correlation  clustering  aic  bic  dependent-variable  k-means  mean  standard-error  measurement-error  errors-in-variables  regression  multiple-regression  pca  linear-model  dimensionality-reduction  machine-learning  neural-networks  deep-learning  conv-neural-network  computer-vision  clustering  spss  r  weighted-data  wilcoxon-signed-rank  bayesian  hierarchical-bayesian  bugs  stan  distributions  categorical-data  variance  ecology  r  survival  regression  r-squared  descriptive-statistics  cross-section  maximum-likelihood  factor-analysis  likert  r  multiple-imputation  propensity-scores  distributions  t-test  logit  probit  z-test  confidence-interval  poisson-distribution  deep-learning  conv-neural-network  residual-networks  r  survey  wilcoxon-mann-whitney  ranking  kruskal-wallis  bias  loss-functions  frequentist  decision-theory  risk  machine-learning  distributions  normal-distribution  multivariate-analysis  inference  dataset  factor-analysis  survey  multilevel-analysis  clinical-trials 

1
Jaka intuicja kryje się za wymiennymi próbkami pod hipotezą zerową?
Testy permutacyjne (zwane również testem randomizacji, testem ponownej randomizacji lub testem dokładnym) są bardzo przydatne i przydają się, gdy t-testnie jest spełnione założenie o rozkładzie normalnym wymagane na przykład i gdy transformacja wartości przez ranking test nieparametryczny, Mann-Whitney-U-testktóry prowadziłby do utraty większej ilości informacji. Jednak nie należy zapominać o jednym …
15 hypothesis-testing  permutation-test  exchangeability  r  statistical-significance  loess  data-visualization  normal-distribution  pdf  ggplot2  kernel-smoothing  probability  self-study  expected-value  normal-distribution  prior  correlation  time-series  regression  heteroscedasticity  estimation  estimators  fisher-information  data-visualization  repeated-measures  binary-data  panel-data  mathematical-statistics  coefficient-of-variation  normal-distribution  order-statistics  regression  machine-learning  one-class  probability  estimators  forecasting  prediction  validation  finance  measurement-error  variance  mean  spatial  monte-carlo  data-visualization  boxplot  sampling  uniform  chi-squared  goodness-of-fit  probability  mixture  theory  gaussian-mixture  regression  statistical-significance  p-value  bootstrap  regression  multicollinearity  correlation  r  poisson-distribution  survival  regression  categorical-data  ordinal-data  ordered-logit  regression  interaction  time-series  machine-learning  forecasting  cross-validation  binomial  multiple-comparisons  simulation  false-discovery-rate  r  clustering  frequency  wilcoxon-mann-whitney  wilcoxon-signed-rank  r  svm  t-test  missing-data  excel  r  numerical-integration  r  random-variable  lme4-nlme  mixed-model  weighted-regression  power-law  errors-in-variables  machine-learning  classification  entropy  information-theory  mutual-information 

1
Regresja błędów w zmiennych: czy poprawne jest łączenie danych z trzech witryn?
Niedawno przyszedł do mnie klient, aby przeprowadzić analizę ładowania początkowego, ponieważ recenzent FDA stwierdził, że ich regresja błędów w zmiennych była nieprawidłowa, ponieważ podczas łączenia danych z witryn analiza obejmuje łączenie danych z trzech witryn, w których dwie witryny zawierały próbki, które były to samo. TŁO Klient miał nową metodę …

2
Co możesz zrobić, gdy masz zmienne predykcyjne oparte na średnich grupowych o różnych wielkościach próby?
Rozważmy klasycznego problemu analizy danych, gdzie trzeba rezultatu YiYiY_{i} i jak to jest związane z wieloma czynnikami prognostycznymi Xi1,...,XipXi1,...,XipX_{i1}, ..., X_{ip} . Podstawowym rodzajem aplikacji, o których tu mowa, jest to YiYiY_{i} jest wynikiem na poziomie grupy, takim jak wskaźnik przestępczości w mieścieiii . Predyktory są cechami na poziomie grupy, …

1
Biodrowy estymator regresji osiągający lepsze wyniki niż obiektywny w modelu błędu w modelu zmiennych
Pracuję nad niektórymi danymi syntetycznymi dla modelu błędu w zmiennej dla niektórych badań. Obecnie mam pojedynczą zmienną niezależną i zakładam, że znam wariancję prawdziwej wartości zmiennej zależnej. Dzięki tym informacjom mogę uzyskać obiektywny estymator dla współczynnika zmiennej zależnej. Model: y=0,5x-10+e2e1~N(0,σ2)σe2~N(0,1)x~=x+e1x~=x+e1\tilde{x} = x + e_1 y=0.5x−10+e2y=0.5x−10+e2y = 0.5x -10 + e_2 …

1
Metody dopasowania „prostego” modelu błędu pomiaru
Szukam metod, które można wykorzystać do oszacowania modelu błędu pomiaru „OLS”. x i = X i + e x , i Y i = α + β X iyi=Yi+ey,iyi=Yi+ey,iy_{i}=Y_{i}+e_{y,i} xi=Xi+ex,ixi=Xi+ex,ix_{i}=X_{i}+e_{x,i} Yi=α+βXiYi=α+βXiY_{i}=\alpha + \beta X_{i} Gdzie błędy są niezależne normalne z nieznanymi wariancjami i . „Standardowy” OLS nie będzie w tym …
Korzystając z naszej strony potwierdzasz, że przeczytałeś(-aś) i rozumiesz nasze zasady używania plików cookie i zasady ochrony prywatności.
Licensed under cc by-sa 3.0 with attribution required.