Pytania otagowane jako cross-validation

Wielokrotnie wstrzymywanie podzbiorów danych podczas dopasowywania modelu w celu kwantyfikacji wydajności modelu na wstrzymanych podzbiorach danych.

5
Czy potrafisz się dopasować, trenując algorytmy uczenia maszynowego za pomocą CV / Bootstrap?
To pytanie może być zbyt otwarte, aby uzyskać ostateczną odpowiedź, ale mam nadzieję, że nie. Algorytmy uczenia maszynowego, takie jak SVM, GBM, Random Forest itp., Generalnie mają pewne wolne parametry, które poza pewną wskazówką praktyczną, muszą być dostosowane do każdego zestawu danych. Zazwyczaj odbywa się to za pomocą pewnego rodzaju …


1
Nieprawidłowe stosowanie weryfikacji krzyżowej (raportowanie wydajności dla najlepszej wartości hiperparametru)
Ostatnio natknąłem się na artykuł, który proponuje użycie klasyfikatora k-NN w określonym zbiorze danych. Autorzy wykorzystali wszystkie dostępne próbki danych, aby przeprowadzić k-krotną weryfikację krzyżową dla różnych wartości k i zgłosić wyniki walidacji krzyżowej najlepszej konfiguracji hiperparametrów. Według mojej wiedzy wynik ten jest stronniczy i powinni zachować osobny zestaw testowy, …

2
Dlaczego warto stosować stratyfikację krzyżową? Dlaczego nie wpływa to na korzyści związane z wariancją?
Powiedziano mi, że korzystne jest stosowanie warstwowej weryfikacji krzyżowej, zwłaszcza gdy klasy odpowiedzi są niezrównoważone. Jeśli jednym z celów walidacji krzyżowej jest pomoc w rozliczeniu losowości naszej oryginalnej próbki danych treningowych, na pewno sprawienie, by każda zakładka miała taki sam rozkład klas, działałoby przeciwko temu, chyba że byłeś pewien, że …

1
Metryki błędów dla krzyżowej weryfikacji modeli Poissona
Sprawdzam krzyżowo model, który próbuje przewidzieć liczbę. Gdyby to był problem z klasyfikacją binarną, obliczyłbym nieoczekiwane AUC, a jeśli byłby to problem regresji, obliczyłbym nieoczekiwanie RMSE lub MAE. W przypadku modelu Poissona, jakich mierników błędów mogę użyć do oceny „dokładności” prognoz poza próbą? Czy istnieje rozszerzenie AUC Poissona, które sprawdza, …

3
K-fold vs. walidacja krzyżowa Monte Carlo
Próbuję poznać różne metody walidacji krzyżowej, przede wszystkim z zamiarem zastosowania do nadzorowanych technik analizy wielowymiarowej. Dwa, z którymi się spotkałem, to techniki K-fold i Monte Carlo. Czytałem, że K-fold jest odmianą Monte Carlo, ale nie jestem pewien, czy w pełni rozumiem, co składa się na definicję Monte Carlo. Czy …

1
Obliczanie powtarzalności efektów z modelu Lmer
Właśnie natknąłem się na ten artykuł , który opisuje, jak obliczyć powtarzalność (aka niezawodność, aka korelacja wewnątrzklasowa) pomiaru za pomocą modelowania efektów mieszanych. Kod R byłby następujący: #fit the model fit = lmer(dv~(1|unit),data=my_data) #obtain the variance estimates vc = VarCorr(fit) residual_var = attr(vc,'sc')^2 intercept_var = attr(vc$id,'stddev')[1]^2 #compute the unadjusted repeatability …
28 mixed-model  reliability  intraclass-correlation  repeatability  spss  factor-analysis  survey  modeling  cross-validation  error  curve-fitting  mediation  correlation  clustering  sampling  machine-learning  probability  classification  metric  r  project-management  optimization  svm  python  dataset  quality-control  checking  clustering  distributions  anova  factor-analysis  exponential  poisson-distribution  generalized-linear-model  deviance  machine-learning  k-nearest-neighbour  r  hypothesis-testing  t-test  r  variance  levenes-test  bayesian  software  bayesian-network  regression  repeated-measures  least-squares  change-scores  variance  chi-squared  variance  nonlinear-regression  regression-coefficients  multiple-comparisons  p-value  r  statistical-significance  excel  sampling  sample  r  distributions  interpretation  goodness-of-fit  normality-assumption  probability  self-study  distributions  references  theory  time-series  clustering  econometrics  binomial  hypothesis-testing  variance  t-test  paired-comparisons  statistical-significance  ab-test  r  references  hypothesis-testing  t-test  normality-assumption  wilcoxon-mann-whitney  central-limit-theorem  t-test  data-visualization  interactive-visualization  goodness-of-fit 

3
Walidacja krzyżowa, w tym szkolenie, walidacja i testowanie. Dlaczego potrzebujemy trzech podzbiorów?
Mam pytanie dotyczące procesu weryfikacji krzyżowej. Jestem w trakcie kursu uczenia maszynowego na Cursera. Jeden z tematów dotyczy weryfikacji krzyżowej. Trochę trudno było mnie śledzić. Wiem, dlaczego potrzebujemy CV, ponieważ chcemy, aby nasze modele działały dobrze na przyszłych (nieznanych) danych, a CV zapobiega nadmiernemu dopasowaniu. Jednak sam proces jest mylący. …

1
Czy stopnie swobody mogą być liczbą niecałkowitą?
Kiedy korzystam z GAM, daje mi resztkowy DF (ostatni wiersz kodu). Co to znaczy? Wychodząc poza przykład GAM, ogólnie, czy liczba stopni swobody może być liczbą niecałkowitą?26.626.626.6 > library(gam) > summary(gam(mpg~lo(wt),data=mtcars)) Call: gam(formula = mpg ~ lo(wt), data = mtcars) Deviance Residuals: Min 1Q Median 3Q Max -4.1470 -1.6217 -0.8971 …
27 r  degrees-of-freedom  gam  machine-learning  pca  lasso  probability  self-study  bootstrap  expected-value  regression  machine-learning  linear-model  probability  simulation  random-generation  machine-learning  distributions  svm  libsvm  classification  pca  multivariate-analysis  feature-selection  archaeology  r  regression  dataset  simulation  r  regression  time-series  forecasting  predictive-models  r  mean  sem  lavaan  machine-learning  regularization  regression  conv-neural-network  convolution  classification  deep-learning  conv-neural-network  regression  categorical-data  econometrics  r  confirmatory-factor  scale-invariance  self-study  unbiased-estimator  mse  regression  residuals  sampling  random-variable  sample  probability  random-variable  convergence  r  survival  weibull  references  autocorrelation  hypothesis-testing  distributions  correlation  regression  statistical-significance  regression-coefficients  univariate  categorical-data  chi-squared  regression  machine-learning  multiple-regression  categorical-data  linear-model  pca  factor-analysis  factor-rotation  classification  scikit-learn  logistic  p-value  regression  panel-data  multilevel-analysis  variance  bootstrap  bias  probability  r  distributions  interquartile  time-series  hypothesis-testing  normal-distribution  normality-assumption  kurtosis  arima  panel-data  stata  clustered-standard-errors  machine-learning  optimization  lasso  multivariate-analysis  ancova  machine-learning  cross-validation 


1
Czy sprawdzanie poprawności jest właściwym zamiennikiem zestawu sprawdzania poprawności?
W klasyfikacji tekstowej mam zestaw szkoleniowy z około 800 próbkami i zestaw testowy z około 150 próbkami. Zestaw testowy nigdy nie był używany i czeka na użycie do końca. Używam całego zestawu 800 próbek treningowych, z 10-krotnym sprawdzaniem poprawności podczas strojenia i poprawiania klasyfikatorów i funkcji. Oznacza to, że nie …

2
Szacunki wariancji w k-krotnej walidacji krzyżowej
Walidacja krzyżowa K-krotnie może być wykorzystana do oszacowania możliwości generalizacji danego klasyfikatora. Czy mogę (lub powinienem) również obliczyć wariancję zbiorczą ze wszystkich przebiegów sprawdzania poprawności, aby uzyskać lepsze oszacowanie jej wariancji? Jeśli nie to dlaczego? Znalazłem artykuły, które wykorzystują połączone odchylenie standardowe w wielu testach krzyżowych . Znalazłem także artykuły …


4
Walidacja wewnętrzna i zewnętrzna oraz wybór modelu
Rozumiem, że przy weryfikacji krzyżowej i wyborze modelu staramy się rozwiązać dwie rzeczy: P1 . Oszacuj oczekiwaną stratę w populacji podczas treningu z naszą próbą P2 . Zmierz i zgłoś naszą niepewność dotyczącą tego oszacowania (wariancja, przedziały ufności, stronniczość itp.) Standardową praktyką wydaje się być powtarzanie krzyżowej weryfikacji, ponieważ zmniejsza …


Korzystając z naszej strony potwierdzasz, że przeczytałeś(-aś) i rozumiesz nasze zasady używania plików cookie i zasady ochrony prywatności.
Licensed under cc by-sa 3.0 with attribution required.