Pytania otagowane jako svm

Support Vector Machine odnosi się do „zestawu powiązanych nadzorowanych metod uczenia się, które analizują dane i rozpoznają wzorce, stosowanych do klasyfikacji i analizy regresji”.

2
podejścia szkoleniowe dla wysoce niezrównoważonego zestawu danych
Mam wysoce niezrównoważony zestaw danych testowych. Zestaw dodatni składa się ze 100 przypadków, a zestaw ujemny składa się z 1500 przypadków. Po stronie treningowej mam większą pulę kandydatów: pozytywny zestaw treningowy ma 1200 przypadków, a negatywny zestaw treningowy ma 12000 przypadków. W przypadku tego rodzaju scenariusza mam kilka możliwości: 1) …

4
Niska dokładność klasyfikacji, co dalej?
Jestem więc nowicjuszem w dziedzinie ML i staram się dokonać klasyfikacji. Moim celem jest przewidzieć wynik wydarzenia sportowego. Zebrałem trochę danych historycznych i teraz próbuję wyszkolić klasyfikatora. Dostałem około 1200 próbek, z czego 0,2 oddzieliłem do celów testowych, inne poddałem wyszukiwaniu sieci (w tym walidacji krzyżowej) z różnymi klasyfikatorami. Do …

3
Wyszukiwanie w siatce na podstawie k-krotnego sprawdzania poprawności
Mam zestaw danych 120 próbek w 10-krotnym ustawieniu walidacji krzyżowej. Obecnie wybieram dane treningowe pierwszego wstrzymania i wykonuję na nim 5-krotną weryfikację krzyżową, aby wybrać wartości gamma i C za pomocą wyszukiwania siatki. Używam SVM z jądrem RBF. Ponieważ przeprowadzam dziesięć-krotną weryfikację krzyżową, aby zgłosić precyzję, pamiętajcie, czy wykonuję to …

6
Najszybsza implementacja SVM
Bardziej ogólne pytanie. Korzystam z SVM rbf do modelowania predykcyjnego. Myślę, że mój obecny program zdecydowanie potrzebuje przyspieszenia. Używam scikit learning z prostym do dokładnego wyszukiwania siatki + sprawdzania poprawności. Każdy przebieg SVM zajmuje około minuty, ale mimo wszystkich iteracji wciąż uważam, że jest zbyt wolny. Zakładając, że w końcu …

3
SVM dla niezrównoważonych danych
Chcę spróbować użyć maszyn wektorów wsparcia (SVM) w moim zestawie danych. Zanim jednak spróbowałem rozwiązać problem, zostałem ostrzeżony, że maszyny SVM nie radzą sobie dobrze z bardzo niezrównoważonymi danymi. W moim przypadku mogę mieć aż 95-98% zera i 2-5% 1. Próbowałem znaleźć zasoby, które mówiły o używaniu SVM na rzadkich …

1
Jaka intuicja kryje się za wymiennymi próbkami pod hipotezą zerową?
Testy permutacyjne (zwane również testem randomizacji, testem ponownej randomizacji lub testem dokładnym) są bardzo przydatne i przydają się, gdy t-testnie jest spełnione założenie o rozkładzie normalnym wymagane na przykład i gdy transformacja wartości przez ranking test nieparametryczny, Mann-Whitney-U-testktóry prowadziłby do utraty większej ilości informacji. Jednak nie należy zapominać o jednym …
15 hypothesis-testing  permutation-test  exchangeability  r  statistical-significance  loess  data-visualization  normal-distribution  pdf  ggplot2  kernel-smoothing  probability  self-study  expected-value  normal-distribution  prior  correlation  time-series  regression  heteroscedasticity  estimation  estimators  fisher-information  data-visualization  repeated-measures  binary-data  panel-data  mathematical-statistics  coefficient-of-variation  normal-distribution  order-statistics  regression  machine-learning  one-class  probability  estimators  forecasting  prediction  validation  finance  measurement-error  variance  mean  spatial  monte-carlo  data-visualization  boxplot  sampling  uniform  chi-squared  goodness-of-fit  probability  mixture  theory  gaussian-mixture  regression  statistical-significance  p-value  bootstrap  regression  multicollinearity  correlation  r  poisson-distribution  survival  regression  categorical-data  ordinal-data  ordered-logit  regression  interaction  time-series  machine-learning  forecasting  cross-validation  binomial  multiple-comparisons  simulation  false-discovery-rate  r  clustering  frequency  wilcoxon-mann-whitney  wilcoxon-signed-rank  r  svm  t-test  missing-data  excel  r  numerical-integration  r  random-variable  lme4-nlme  mixed-model  weighted-regression  power-law  errors-in-variables  machine-learning  classification  entropy  information-theory  mutual-information 

3
Intuicja dla maszyn wektorów wsparcia i hiperpłaszczyzny
W moim projekcie chcę stworzyć model regresji logistycznej do przewidywania klasyfikacji binarnej (1 lub 0). Mam 15 zmiennych, z których 2 są kategoryczne, a pozostałe są mieszaniną zmiennych ciągłych i dyskretnych. Aby dopasować model regresji logistycznej, zalecono mi sprawdzenie liniowej separowalności za pomocą SVM, perceptronu lub programowania liniowego. Jest to …

5
Jądro SVM: Chcę intuicyjnego zrozumienia mapowania do przestrzennej przestrzeni cech i tego, jak to umożliwia separację liniową
Próbuję zrozumieć intuicję stojącą za SVM jądra. Teraz rozumiem, jak działa liniowy SVM, dzięki czemu tworzona jest linia decyzyjna, która najlepiej dzieli dane. Rozumiem również zasadę przenoszenia danych do przestrzeni o większych wymiarach oraz sposób, w jaki może to ułatwić znalezienie liniowej linii decyzyjnej w tej nowej przestrzeni. Nie rozumiem, …



1
Czy klątwa wymiarowa działa na niektóre modele bardziej niż na inne?
Miejsca, które czytałem o klątwie wymiarowej, wyjaśniają to przede wszystkim w odniesieniu do kNN, a ogólnie modeli liniowych. Regularnie widzę najlepszych rankingów w Kaggle korzystających z tysięcy funkcji w zbiorze danych, który prawie nie ma 100 000 punktów danych. Używają głównie drzew Boosted i NN. To, że wiele cech wydaje …



1
Różnica między regresją logistyczną a maszynami wektorów wsparcia?
Wiem, że regresja logistyczna znajduje hiperpłaszczyznę, która oddziela próbki szkoleniowe. Wiem również, że maszyny wektorowe wsparcia znajdują hiperpłaszczyznę z maksymalnym marginesem. Moje pytanie: czy zatem różnica między regresją logistyczną (LR) a maszynami wektorów wsparcia (SVM) polega na tym, że LR znajduje jakąkolwiek hiperpłaszczyznę, która oddziela próbki szkoleniowe, podczas gdy SVM …


Korzystając z naszej strony potwierdzasz, że przeczytałeś(-aś) i rozumiesz nasze zasady używania plików cookie i zasady ochrony prywatności.
Licensed under cc by-sa 3.0 with attribution required.