Pytania otagowane jako neural-networks

Sztuczne sieci neuronowe (ANN) to szeroka klasa modeli obliczeniowych luźno opartych na biologicznych sieciach neuronowych. Obejmują one wyprzedzające NN (w tym „głębokie” NN), splotowe NN, nawracające NN itp.

1
Prawdopodobieństwo krzyżowe lub prawdopodobieństwo dziennika w warstwie wyjściowej
Przeczytałem tę stronę: http://neuralnetworksanddeeplearning.com/chap3.html i powiedział, że sigmoidalna warstwa wyjściowa z entropią krzyżową jest dość podobna do warstwy wyjściowej softmax z prawdopodobieństwem logarytmicznym. co się stanie, jeśli użyję sigmoid z logarytmem prawdopodobieństwa lub softmax z entropią krzyżową w warstwie wyjściowej? czy to w porządku? ponieważ widzę, że istnieje niewielka różnica …


2
Konwolucyjne sieci neuronowe: czy neurony centralne nie są nadmiernie reprezentowane na wyjściu?
[To pytanie zadawano również przy przepełnieniu stosu] Pytanie w skrócie Badam splotowe sieci neuronowe i uważam, że sieci te nie traktują każdego neuronu wejściowego (piksela / parametru) w sposób równoważny. Wyobraź sobie, że mamy głęboką sieć (wiele warstw), która stosuje splot na niektórych obrazach wejściowych. Neurony w „środku” obrazu mają …



2
Co oznacza termin nasycenie nieliniowości?
Czytałem artykuł Klasyfikacja ImageNet z głębokimi sieciami neuronowymi splotowymi, aw części 3, w której wyjaśnili architekturę swojej sieci neuronowej splotowej, wyjaśnili, w jaki sposób woleli: nieliniowa nieliniowośćf(x)=max(0,x).f(x)=max(0,x).f(x) = max(0, x). ponieważ trenowanie było szybsze. W tym artykule wydaje się, że odnoszą się one do nasycenia nieliniowości jako bardziej tradycyjnych funkcji …

5
Jak radzić sobie z hierarchicznymi / zagnieżdżonymi danymi w uczeniu maszynowym
Wyjaśnię mój problem na przykładzie. Załóżmy, że chcesz przewidzieć dochód danej osoby na podstawie niektórych atrybutów: {Wiek, płeć, kraj, region, miasto}. Masz taki zestaw danych szkoleniowych train <- data.frame(CountryID=c(1,1,1,1, 2,2,2,2, 3,3,3,3), RegionID=c(1,1,1,2, 3,3,4,4, 5,5,5,5), CityID=c(1,1,2,3, 4,5,6,6, 7,7,7,8), Age=c(23,48,62,63, 25,41,45,19, 37,41,31,50), Gender=factor(c("M","F","M","F", "M","F","M","F", "F","F","F","M")), Income=c(31,42,71,65, 50,51,101,38, 47,50,55,23)) train CountryID RegionID CityID …
29 regression  machine-learning  multilevel-analysis  correlation  dataset  spatial  paired-comparisons  cross-correlation  clustering  aic  bic  dependent-variable  k-means  mean  standard-error  measurement-error  errors-in-variables  regression  multiple-regression  pca  linear-model  dimensionality-reduction  machine-learning  neural-networks  deep-learning  conv-neural-network  computer-vision  clustering  spss  r  weighted-data  wilcoxon-signed-rank  bayesian  hierarchical-bayesian  bugs  stan  distributions  categorical-data  variance  ecology  r  survival  regression  r-squared  descriptive-statistics  cross-section  maximum-likelihood  factor-analysis  likert  r  multiple-imputation  propensity-scores  distributions  t-test  logit  probit  z-test  confidence-interval  poisson-distribution  deep-learning  conv-neural-network  residual-networks  r  survey  wilcoxon-mann-whitney  ranking  kruskal-wallis  bias  loss-functions  frequentist  decision-theory  risk  machine-learning  distributions  normal-distribution  multivariate-analysis  inference  dataset  factor-analysis  survey  multilevel-analysis  clinical-trials 


3
R: Losowy las wyrzucający NaN / Inf w błędzie „wywołanie funkcji zagranicznej” pomimo braku NaN w zbiorze danych [zamknięte]
Zamknięte. To pytanie jest nie na temat . Obecnie nie przyjmuje odpowiedzi. Chcesz poprawić to pytanie? Zaktualizuj pytanie, aby było tematem dotyczącym weryfikacji krzyżowej. Zamknięte 2 lata temu . Używam karetki, aby uruchomić sprawdzony krzyżowo losowy las w zbiorze danych. Zmienna Y jest czynnikiem. W moim zestawie danych nie ma …

4
Jak to możliwe, że utrata walidacji rośnie, a jednocześnie zwiększa się dokładność walidacji
Uczę prostej sieci neuronowej na zbiorze danych CIFAR10. Po pewnym czasie utrata walidacji zaczęła rosnąć, a dokładność walidacji również rośnie. Utrata i dokładność testu stale się poprawiają. Jak to jest możliwe? Wydaje się, że w przypadku wzrostu utraty walidacji dokładność powinna się zmniejszyć. PS Jest kilka podobnych pytań, ale nikt …

3
Czy nie można teraz powiedzieć, że modele głębokiego uczenia się są interpretowalne? Czy funkcje węzłów?
W przypadku modeli statystycznych i uczenia maszynowego istnieje wiele poziomów interpretacji: 1) algorytm jako całość, 2) części algorytmu ogólnie 3) części algorytmu na poszczególnych wejściach, a te trzy poziomy są podzielone na dwie części, jeden do treningu, a drugi do oceny funkcji. Ostatnie dwie części są znacznie bliższe niż pierwsze. …


5
Czy głęboka sieć neuronowa może przybliżać funkcję mnożenia bez normalizacji?
Powiedzmy, że chcemy wykonać regresję dla prostego f = x * yużycia standardowej głębokiej sieci neuronowej. Pamiętam, że istnieją powtórzenia, które mówią, że NN z jedną warstwą ukrytą może apoksymować dowolną funkcję, ale próbowałem i bez normalizacji NN nie był w stanie zbliżyć nawet tego prostego mnożenia. Pomogła tylko normalizacja …


1
Dlaczego funkcje aktywacji niecentrowanej są problemem w propagacji wstecznej?
Przeczytałem tutaj : Wyjścia sigmoidalne nie są wyśrodkowane na zero . Jest to niepożądane, ponieważ neurony w późniejszych warstwach przetwarzania w sieci neuronowej (więcej o tym wkrótce) otrzymywałyby dane, które nie są wyśrodkowane. Ma to wpływ na dynamikę podczas opadania gradientu, ponieważ jeśli dane wchodzące do neuronu są zawsze dodatnie …

Korzystając z naszej strony potwierdzasz, że przeczytałeś(-aś) i rozumiesz nasze zasady używania plików cookie i zasady ochrony prywatności.
Licensed under cc by-sa 3.0 with attribution required.