Pytania otagowane jako cdf

Dystrybuanta. Podczas gdy PDF podaje gęstość prawdopodobieństwa każdej wartości zmiennej losowej, CDF (często oznaczany jakoF(x)) daje prawdopodobieństwo, że zmienna losowa będzie mniejsza lub równa określonej wartości.


2
Jakie jest intuicyjne znaczenie podłączania losowej zmiennej do własnego pliku pdf lub cdf?
Plik pdf jest zwykle zapisywany jako f(x|θ)f(x|θ)f(x|\theta), gdzie małe litery xxx jest traktowany jako realizacja lub wynik zmiennej losowej XXXktóry ma ten pdf. Podobnie plik cdf jest zapisywany jakoFX(x)FX(x)F_X(x), co ma znaczenie P(X&lt;x)P(X&lt;x)P(X<x). Jednak w niektórych okolicznościach, takich jak definicja funkcji score i to wyprowadzenie, że cdf jest równomiernie rozłożony …

1
Który model głębokiego uczenia może klasyfikować kategorie, które nie wykluczają się wzajemnie
Przykłady: w opisie stanowiska mam zdanie: „Starszy inżynier Java w Wielkiej Brytanii”. Chcę użyć modelu głębokiego uczenia się, aby przewidzieć go jako 2 kategorie: English i IT jobs. Jeśli użyję tradycyjnego modelu klasyfikacji, może on przewidzieć tylko 1 etykietę z softmaxfunkcją na ostatniej warstwie. Dlatego mogę użyć 2 modelowych sieci …
9 machine-learning  deep-learning  natural-language  tensorflow  sampling  distance  non-independent  application  regression  machine-learning  logistic  mixed-model  control-group  crossover  r  multivariate-analysis  ecology  procrustes-analysis  vegan  regression  hypothesis-testing  interpretation  chi-squared  bootstrap  r  bioinformatics  bayesian  exponential  beta-distribution  bernoulli-distribution  conjugate-prior  distributions  bayesian  prior  beta-distribution  covariance  naive-bayes  smoothing  laplace-smoothing  distributions  data-visualization  regression  probit  penalized  estimation  unbiased-estimator  fisher-information  unbalanced-classes  bayesian  model-selection  aic  multiple-regression  cross-validation  regression-coefficients  nonlinear-regression  standardization  naive-bayes  trend  machine-learning  clustering  unsupervised-learning  wilcoxon-mann-whitney  z-score  econometrics  generalized-moments  method-of-moments  machine-learning  conv-neural-network  image-processing  ocr  machine-learning  neural-networks  conv-neural-network  tensorflow  r  logistic  scoring-rules  probability  self-study  pdf  cdf  classification  svm  resampling  forecasting  rms  volatility-forecasting  diebold-mariano  neural-networks  prediction-interval  uncertainty 

1
Co to jest CDF z dwoma próbkami
Próbuję zrozumieć, jak uzyskać wartości dla jednostronnego testu Kołmogorowa-Smirnowa i staram się znaleźć CDF dla i w przypadku dwóch próbek. Poniżej podano w kilku miejscach CDF dla w przypadku jednej próby:pppD+n1,n2Dn1,n2+D^{+}_{n_{1},n_{2}}D−n1,n2Dn1,n2−D^{-}_{n_{1},n_{2}}D+nDn+D^{+}_{n} p+n(x)=P(D+n≥x|H0)=x∑j=0⌊n(1−x)⌋(nj)(jn+x)j−1(1−x−jn)n−jpn+(x)=P(Dn+≥x|H0)=x∑j=0⌊n(1−x)⌋(nj)(jn+x)j−1(1−x−jn)n−jp^{+}_{n}\left(x\right) = \text{P}\left(D^{+}_{n} \ge x | \text{H}_{0}\right) = x\sum_{j=0}^{\lfloor n\left(1-x\right)\rfloor}{ \binom{n}{j} \left(\frac{j}{n}+x\right)^{j-1}\left(1 - x - \frac{j}{n}\right)^{n-j}} Co więcej, istnieje …

2
Wariancja średniej próbki próbki ładowania początkowego
Niech będą odrębnymi obserwacjami (bez powiązań). Niech oznacza próbkę bootstrap (próbka z empirycznego CDF) i niech . Znajdź i .X1,...,XnX1,...,XnX_{1},...,X_{n}X∗1,...,X∗nX1∗,...,Xn∗X_{1}^{*},...,X_{n}^{*}X¯∗n=1n∑ni=1X∗iX¯n∗=1n∑i=1nXi∗\bar{X}_{n}^{*}=\frac{1}{n}\sum_{i=1}^{n}X_{i}^{*}E(X¯∗n)E(X¯n∗)E(\bar{X}_{n}^{*})Var(X¯∗n)Var(X¯n∗)\mathrm{Var}(\bar{X}_{n}^{*}) Do tej pory mam to, że to każdy z prawdopodobieństwem więc i co daje X∗iXi∗X_{i}^{*}X1,...,XnX1,...,XnX_{1},...,X_{n}1n1n\frac{1}{n}E(X∗i)=1nE(X1)+...+1nE(Xn)=nμn=μE(Xi∗)=1nE(X1)+...+1nE(Xn)=nμn=μ E(X_{i}^{*})=\frac{1}{n}E(X_{1})+...+\frac{1}{n}E(X_{n})=\frac{n\mu}{n}=\mu E(X∗2i)=1nE(X21)+...+1nE(X2n)=n(μ2+σ2)n=μ2+σ2,E(Xi∗2)=1nE(X12)+...+1nE(Xn2)=n(μ2+σ2)n=μ2+σ2,E(X_{i}^{*2})=\frac{1}{n}E(X_{1}^{2})+...+\frac{1}{n}E(X_{n}^{2})=\frac{n(\mu^{2}+\sigma^{2})}{n}=\mu^{2}+\sigma^{2}\>, Var(X∗i)=E(X∗2i)−(E(X∗i))2=μ2+σ2−μ2=σ2.Var(Xi∗)=E(Xi∗2)−(E(Xi∗))2=μ2+σ2−μ2=σ2. \mathrm{Var}(X_{i}^{*})=E(X_{i}^{*2})-(E(X_{i}^{*}))^{2}=\mu^{2}+\sigma^{2}-\mu^{2}=\sigma^{2} \>. Następnie and od ' są niezależne. To dajeE(X¯∗n)=E(1n∑i=1nX∗i)=1n∑i=1nE(X∗i)=nμn=μE(X¯n∗)=E(1n∑i=1nXi∗)=1n∑i=1nE(Xi∗)=nμn=μE(\bar{X}_{n}^{*})=E(\frac{1}{n}\sum_{i=1}^{n}X_{i}^{*})=\frac{1}{n}\sum_{i=1}^{n}E(X_{i}^{*})=\frac{n\mu}{n}=\mu Var(X¯∗n)=Var(1n∑i=1nX∗i)=1n2∑i=1nVar(X∗i)Var(X¯n∗)=Var(1n∑i=1nXi∗)=1n2∑i=1nVar(Xi∗) \mathrm{Var}(\bar{X}_{n}^{*})=\mathrm{Var}(\frac{1}{n}\sum_{i=1}^{n}X_{i}^{*})=\frac{1}{n^{2}}\sum_{i=1}^{n}\mathrm{Var}(X_{i}^{*})X∗iXi∗X_{i}^{*}Var(X¯∗n)=nσ2n2=σ2nVar(X¯n∗)=nσ2n2=σ2n\mathrm{Var}(\bar{X}_{n}^{*})=\frac{n\sigma^{2}}{n^{2}}=\frac{\sigma^{2}}{n} …

2
Obliczanie skumulowanego rozkładu maksymalnego wykorzystania losowego marszu z dryfowaniem
Interesuje mnie rozkład maksymalnego wykorzystania losowego marszu: Niech gdzie . Maksymalna po okresach wynosi . Artykuł Magdona-Ismaila i in. glin. daje rozkład maksymalnego wyciągnięcia ruchu Browna z dryfowaniem. Wyrażenie obejmuje nieskończoną sumę, która obejmuje niektóre terminy zdefiniowane tylko pośrednio. Mam problemy z napisaniem implementacji, która jest zbieżna. Czy ktoś jest …
Korzystając z naszej strony potwierdzasz, że przeczytałeś(-aś) i rozumiesz nasze zasady używania plików cookie i zasady ochrony prywatności.
Licensed under cc by-sa 3.0 with attribution required.