AIC i BIC są metodami oceny dopasowania modelu karanymi za liczbę oszacowanych parametrów. Jak rozumiem, BIC karze modele bardziej za wolne parametry niż AIC. Czy poza preferencjami opartymi na rygorystycznych kryteriach istnieją jeszcze inne powody, by preferować AIC zamiast BIC lub odwrotnie?
Na str. 34 ze swojego PRNN Brian Ripley komentuje, że „AIC został nazwany przez Akaike (1974) jako„ Kryterium informacyjne ”, chociaż wydaje się, że powszechnie uważa się, że A oznacza Akaike”. Rzeczywiście, wprowadzając statystyki AIC, Akaike (1974, s. 719) wyjaśnia to "IC stands for information criterion and A is added …
Zazwyczaj używam BIC, ponieważ rozumiem, że bardziej ceni parsimony niż AIC. Jednak zdecydowałem się teraz zastosować bardziej kompleksowe podejście i chciałbym również użyć AIC. Wiem, że Raftery (1995) przedstawił dobre wytyczne dla różnic BIC: 0-2 jest słaby, 2-4 jest pozytywnym dowodem na lepszy model jednego itd. Zajrzałem do podręczników i …
Czy można obliczyć wartości AIC lub BIC dla modeli regresji lasso i innych modeli znormalizowanych, w których parametry tylko częściowo wchodzą do równania. Jak określa się stopnie swobody? Używam R, aby dopasować modele regresji lasso z glmnet()funkcją z glmnetpakietu i chciałbym wiedzieć, jak obliczyć wartości AIC i BIC dla modelu. …
Wyjaśnię mój problem na przykładzie. Załóżmy, że chcesz przewidzieć dochód danej osoby na podstawie niektórych atrybutów: {Wiek, płeć, kraj, region, miasto}. Masz taki zestaw danych szkoleniowych train <- data.frame(CountryID=c(1,1,1,1, 2,2,2,2, 3,3,3,3), RegionID=c(1,1,1,2, 3,3,4,4, 5,5,5,5), CityID=c(1,1,2,3, 4,5,6,6, 7,7,7,8), Age=c(23,48,62,63, 25,41,45,19, 37,41,31,50), Gender=factor(c("M","F","M","F", "M","F","M","F", "F","F","F","M")), Income=c(31,42,71,65, 50,51,101,38, 47,50,55,23)) train CountryID RegionID CityID …
W pytaniu w innym miejscu na tej stronie, w kilku odpowiedziach wspomniano, że AIC jest równoważny walidacji krzyżowej z pominięciem jednego (LOO) i że BIC jest równoważny krzyżowej walidacji K-krotnie. Czy istnieje sposób empirycznego zademonstrowania tego w R, aby techniki zastosowane w LOO i K-fold zostały wyjaśnione i wykazano, że …
Szukam przykładów, jak interpretować szacunki AIC (kryterium informacji Akaike) i BIC (kryterium informacji bayesowskiej). Czy ujemną różnicę między kodami BIC można interpretować jako późniejsze szanse jednego modelu na drugi? Jak mogę to wyrazić słowami? Na przykład BIC = -2 może sugerować, że szanse lepszego modelu na drugi model wynoszą w …
Po przeczytaniu książki Galit Shmueli „Wyjaśnić lub przewidzieć” (2010) zastanawia mnie pozorna sprzeczność. Istnieją trzy przesłanki, AIC - wybór modelu na podstawie BIC (koniec str. 300 - początek str. 301): po prostu, AIC powinien być używany do wybierania modelu przeznaczonego do przewidywania, podczas gdy BIC powinien być używany do wybierania …
To pytanie jest kontynuacją lub próbą wyjaśnienia możliwych nieporozumień dotyczących tematu, który ja i wiele innych osób uważam za nieco trudny, jeśli chodzi o różnicę między AIC i BIC. W bardzo ładnej odpowiedzi @Dave Kellen na ten temat ( /stats//a/767/30589 ) czytamy: Twoje pytanie sugeruje, że AIC i BIC próbują …
(To pytanie może wydawać się bardziej odpowiednie dla filozofii SE. Mam nadzieję, że statystycy mogą wyjaśnić moje nieporozumienia na temat wypowiedzi Boxa i Shmueli, dlatego zamieszczam je tutaj). George Box (o sławie ARIMA) powiedział: „Wszystkie modele są błędne, ale niektóre są przydatne”. Galit Shmueli w swoim słynnym artykule „Wyjaśnić lub …
Właśnie natknąłem się na „kryterium informacyjne Akaike” i zauważyłem dużą ilość literatury na temat wyboru modelu (wydaje się, że istnieją również takie rzeczy jak BIC). Dlaczego współczesne metody uczenia maszynowego nie wykorzystują kryteriów wyboru modeli BIC i AIC?
Analizuję zestaw danych przy użyciu modelu efektów mieszanych z jednym ustalonym efektem (warunkiem) i dwoma efektami losowymi (uczestnik ze względu na projekt i parę wewnątrz przedmiotu). Model ten został wygenerowany z lme4pakietu: exp.model<-lmer(outcome~condition+(1|participant)+(1|pair),data=exp). Następnie wykonałem test współczynnika wiarygodności tego modelu względem modelu bez ustalonego efektu (warunku) i mam znaczącą różnicę. …
Ogólnie rozumiem, że AIC zajmuje się kompromisem między dobrem dopasowania modelu a złożonością modelu. A jado= 2 k - 2 l n ( L )AIC=2k−2ln(L)AIC =2k -2ln(L) kkk = liczba parametrów w modelu L.LL = prawdopodobieństwo Bayesowskie kryterium informacyjne BIC jest ściśle powiązane z AIC. AIC karać liczbę parametrów słabiej …
Powiedzmy, że mam problem z wyborem modelu i próbuję użyć AIC lub BIC do oceny modeli. Jest to proste w przypadku modeli, które mają pewną liczbę parametrów o wartościach rzeczywistych.kkk Co jednak, jeśli jeden z naszych modeli (na przykład model Mallowsa ) ma permutację plus niektóre parametry o wartości rzeczywistej …
Obecnie próbuję obliczyć BIC dla mojego zestawu danych zabawek (ofc iris (:). Chcę odtworzyć wyniki, jak pokazano tutaj (ryc. 5). Ten papier jest również moim źródłem dla formuł BIC. Mam z tym 2 problemy: Notacja: ninin_i I = liczba elementów w klastrzeiii CiCiC_i i = współrzędne środkowe klastraiii xjxjx_j i …
Używamy plików cookie i innych technologii śledzenia w celu poprawy komfortu przeglądania naszej witryny, aby wyświetlać spersonalizowane treści i ukierunkowane reklamy, analizować ruch w naszej witrynie, i zrozumieć, skąd pochodzą nasi goście.
Kontynuując, wyrażasz zgodę na korzystanie z plików cookie i innych technologii śledzenia oraz potwierdzasz, że masz co najmniej 16 lat lub zgodę rodzica lub opiekuna.