Pytania otagowane jako instrumental-variables

Zmienne instrumentalne (IV) są używane do wnioskowania przyczynowego z danymi obserwacyjnymi w obecności endogenności, gdy standardowe metody regresji dają błędne i niespójne oszacowania.

2
Co możemy powiedzieć o modelach danych obserwacyjnych przy braku instrumentów?
W przeszłości zadawano mi wiele pytań dotyczących opublikowanych artykułów w wielu obszarach, w których regresję (i powiązane modele, takie jak modele panelowe lub GLM) stosuje się na danych obserwacyjnych (tj. Danych niepochodzących z kontrolowanego eksperymentu , w wielu przypadkach - ale nie zawsze - danych obserwowanych w czasie), ale nie …


1
Spójność 2SLS z binarną zmienną endogenną
Czytałem, że estymator 2SLS jest nadal spójny nawet z binarną zmienną endogenną ( http://www.stata.com/statalist/archive/2004-07/msg00699.html ). W pierwszym etapie zamiast modelu liniowego zostanie uruchomiony model leczenia probitowego. Czy istnieje formalny dowód na to, że 2SLS jest nadal spójny, nawet jeśli 1. etap jest modelem probit lub logit? A co jeśli wynik …

1
Dlaczego Anova () i drop1 () podają różne odpowiedzi dla GLMM?
Mam GLMM w postaci: lmer(present? ~ factor1 + factor2 + continuous + factor1*continuous + (1 | factor3), family=binomial) Kiedy używam drop1(model, test="Chi"), otrzymuję inne wyniki niż w przypadku korzystania Anova(model, type="III")z pakietu samochodowego lub summary(model). Te dwa ostatnie dają te same odpowiedzi. Korzystając z wielu sfabrykowanych danych, odkryłem, że te …
10 r  anova  glmm  r  mixed-model  bootstrap  sample-size  cross-validation  roc  auc  sampling  stratification  random-allocation  logistic  stata  interpretation  proportion  r  regression  multiple-regression  linear-model  lm  r  cross-validation  cart  rpart  logistic  generalized-linear-model  econometrics  experiment-design  causality  instrumental-variables  random-allocation  predictive-models  data-mining  estimation  contingency-tables  epidemiology  standard-deviation  mean  ancova  psychology  statistical-significance  cross-validation  synthetic-data  poisson-distribution  negative-binomial  bioinformatics  sequence-analysis  distributions  binomial  classification  k-means  distance  unsupervised-learning  euclidean  correlation  chi-squared  spearman-rho  forecasting  excel  exponential-smoothing  binomial  sample-size  r  change-point  wilcoxon-signed-rank  ranks  clustering  matlab  covariance  covariance-matrix  normal-distribution  simulation  random-generation  bivariate  standardization  confounding  z-statistic  forecasting  arima  minitab  poisson-distribution  negative-binomial  poisson-regression  overdispersion  probability  self-study  markov-process  estimation  maximum-likelihood  classification  pca  group-differences  chi-squared  survival  missing-data  contingency-tables  anova  proportion 

3
Losowe zadanie: po co zawracać sobie głowę?
Losowe przydzielanie jest cenne, ponieważ zapewnia niezależność leczenia od potencjalnych wyników. W ten sposób prowadzi do obiektywnych oszacowań średniego efektu leczenia. Ale inne schematy przydziału mogą również systematycznie zapewniać niezależność leczenia od potencjalnych wyników. Dlaczego więc potrzebujemy losowego przydziału? Innymi słowy, jaka jest przewaga losowego przypisywania nad nielosowymi schematami przypisywania, …
Korzystając z naszej strony potwierdzasz, że przeczytałeś(-aś) i rozumiesz nasze zasady używania plików cookie i zasady ochrony prywatności.
Licensed under cc by-sa 3.0 with attribution required.