Pytania otagowane jako regularization

Uwzględnienie dodatkowych ograniczeń (zwykle kara za złożoność) w procesie dopasowania modelu. Służy do zapobiegania przeuczeniu / zwiększenia dokładności predykcyjnej.

1
Czy stopnie swobody mogą być liczbą niecałkowitą?
Kiedy korzystam z GAM, daje mi resztkowy DF (ostatni wiersz kodu). Co to znaczy? Wychodząc poza przykład GAM, ogólnie, czy liczba stopni swobody może być liczbą niecałkowitą?26.626.626.6 > library(gam) > summary(gam(mpg~lo(wt),data=mtcars)) Call: gam(formula = mpg ~ lo(wt), data = mtcars) Deviance Residuals: Min 1Q Median 3Q Max -4.1470 -1.6217 -0.8971 …
27 r  degrees-of-freedom  gam  machine-learning  pca  lasso  probability  self-study  bootstrap  expected-value  regression  machine-learning  linear-model  probability  simulation  random-generation  machine-learning  distributions  svm  libsvm  classification  pca  multivariate-analysis  feature-selection  archaeology  r  regression  dataset  simulation  r  regression  time-series  forecasting  predictive-models  r  mean  sem  lavaan  machine-learning  regularization  regression  conv-neural-network  convolution  classification  deep-learning  conv-neural-network  regression  categorical-data  econometrics  r  confirmatory-factor  scale-invariance  self-study  unbiased-estimator  mse  regression  residuals  sampling  random-variable  sample  probability  random-variable  convergence  r  survival  weibull  references  autocorrelation  hypothesis-testing  distributions  correlation  regression  statistical-significance  regression-coefficients  univariate  categorical-data  chi-squared  regression  machine-learning  multiple-regression  categorical-data  linear-model  pca  factor-analysis  factor-rotation  classification  scikit-learn  logistic  p-value  regression  panel-data  multilevel-analysis  variance  bootstrap  bias  probability  r  distributions  interquartile  time-series  hypothesis-testing  normal-distribution  normality-assumption  kurtosis  arima  panel-data  stata  clustered-standard-errors  machine-learning  optimization  lasso  multivariate-analysis  ancova  machine-learning  cross-validation 



6
Dlaczego mniejsze ciężary powodują prostsze modele regularyzacji?
Ukończyłem kurs uczenia maszynowego Andrew Nga około rok temu, a teraz piszę moje badanie matematyki w szkole średniej na temat działania regresji logistycznej i technik optymalizacji wydajności. Jedną z tych technik jest oczywiście regularyzacja. Celem regularyzacji jest zapobieganie nadmiernemu dopasowaniu poprzez rozszerzenie funkcji kosztów o cel prostoty modelu. Możemy to …



2
Czy ma sens łączenie PCA i LDA?
Załóżmy, że mam zestaw danych do nadzorowanego zadania klasyfikacji statystycznej, np. Za pomocą klasyfikatora Bayesa. Ten zestaw danych składa się z 20 elementów i chcę sprowadzić go do 2 elementów za pomocą technik redukcji wymiarów, takich jak analiza głównych składników (PCA) i / lub liniowa analiza dyskryminacyjna (LDA). Obie techniki …

3
Interpretacja regularyzacji grzbietu w regresji
Mam kilka pytań dotyczących kary za kalenicę w kontekście najmniejszych kwadratów: βridge=(λID+X′X)−1X′yβridge=(λID+X′X)−1X′y\beta_{ridge} = (\lambda I_D + X'X)^{-1}X'y 1) Wyrażenie to sugeruje, że macierz kowariancji X jest zmniejszona w kierunku macierzy diagonalnej, co oznacza, że ​​(zakładając, że zmienne są znormalizowane przed procedurą) korelacja między zmiennymi wejściowymi zostanie obniżona. Czy ta interpretacja …

5
W jaki sposób najważniejsze główne komponenty mogą zachować moc predykcyjną zmiennej zależnej (a nawet prowadzić do lepszych prognoz)?
Załóżmy, że używam regresji . Dlaczego, wybierając najlepsze głównych składników , model zachowuje moc predykcyjną na ?Y∼XY∼XY \sim XkkkXXXYYY Rozumiem, że z punktu widzenia redukcji wymiarów / wyboru cech, jeśli są wektorami własnymi macierzy kowariancji X z najwyższymi wartościami własnymi k , to Xv_1, Xv_2 ... Xv_k są pierwszymi k …


2
Dlaczego lambda „w granicach jednego błędu standardowego od minimum” jest zalecaną wartością dla lambda w regresji elastycznej sieci?
Rozumiem, jaką rolę odgrywa lambda w regresji sieci elastycznej. Rozumiem, dlaczego należy wybrać lambda.min, wartość lambda, która minimalizuje błąd zwalidowany krzyżowo. Moje pytanie brzmi: gdzie w literaturze statystycznej zaleca się stosowanie lambda.1se, czyli takiej wartości lambda, która minimalizuje błąd CV plus jeden błąd standardowy ? Nie mogę znaleźć formalnego cytatu, …



2
Na czym polega „regresja o zmniejszonej randze”?
Czytałem Elementy uczenia statystycznego i nie mogłem zrozumieć, o co chodzi w rozdziale 3.7 „Skurcz i wybór wielu wyników”. Mówi o RRR (regresja o zmniejszonej rangi) i mogę jedynie zrozumieć, że założenie dotyczy uogólnionego wielowymiarowego modelu liniowego, w którym współczynniki są nieznane (i należy je oszacować), ale wiadomo, że nie …

3
Dlaczego Lars i Glmnet oferują różne rozwiązania problemu Lasso?
Chcę lepiej zrozumieć pakiety R Larsi Glmnetużywane do rozwiązania problemu Lasso: (dla zmiennych i próbek , patrz www.stanford.edu/~hastie/Papers/glmnet.pdf na stronie 3)m i n( β0β) ∈ Rp + 1[ 12)N.∑ja = 1N.( yja- β0- xT.jaβ)2)+ λ | |β| |l1]mjan(β0β)∈Rp+1[12)N.∑ja=1N.(yja-β0-xjaT.β)2)+λ||β||l1]min_{(\beta_0 \beta) \in R^{p+1}} \left[\frac{1}{2N}\sum_{i=1}^{N}(y_i-\beta_0-x_i^T\beta)^2 + \lambda||\beta ||_{l_{1}} \right]pppN.N.N Dlatego zastosowałem je oba …

Korzystając z naszej strony potwierdzasz, że przeczytałeś(-aś) i rozumiesz nasze zasady używania plików cookie i zasady ochrony prywatności.
Licensed under cc by-sa 3.0 with attribution required.