Metody uczenia się jądra są używane w uczeniu maszynowym do uogólnienia technik liniowych na sytuacje nieliniowe, zwłaszcza SVM, PCA i GP. Nie mylić z [wygładzaniem jądra], do szacowania gęstości jądra (KDE) i regresji jądra.
Wiele klasyfikatorów uczenia maszynowego (np. Maszyny wektorów wsparcia) pozwala na określenie jądra. Jaki byłby intuicyjny sposób wyjaśnienia, czym jest jądro? Jednym z aspektów, o którym myślałem, jest rozróżnienie między liniowymi i nieliniowymi jądrami. Mówiąc prościej, mógłbym mówić o „liniowych funkcjach decyzyjnych” i „nieliniowych funkcjach decyzyjnych”. Nie jestem jednak pewien, czy …
Istnieje kilka różnych zastosowań: Szacowanie gęstości jądra sztuczka jądra wygładzanie jądra Wyjaśnij, co znaczy „jądro” w nich, zwykłym angielskim, własnymi słowami.
Czytałem o jądrze PCA ( 1 , 2 , 3 ) z jądrem Gaussa i wielomianem. W jaki sposób jądro Gaussa wyjątkowo dobrze oddziela pozornie jakiekolwiek dane nieliniowe? Proszę podać intuicyjną analizę, a także matematycznie, jeśli to możliwe. Jaka jest właściwość jądra Gaussa (z idealnym σσ\sigma ), czego inne jądra …
Czy podczas korzystania z maszyny wektorów pomocniczych istnieją jakieś wytyczne dotyczące wyboru jądra liniowego vs. jądra nieliniowego, takiego jak RBF? Kiedyś słyszałem, że nieliniowe jądro nie działa dobrze, gdy liczba funkcji jest duża. Czy są jakieś odniesienia w tej sprawie?
Jak udowodnić, że podstawowa funkcja radialna jest jądrem? O ile rozumiem, aby to udowodnić, musimy udowodnić jedno z poniższych:k(x,y)=exp(−||x−y||2)2σ2)k(x,y)=exp(−||x−y||2)2σ2)k(x, y) = \exp(-\frac{||x-y||^2)}{2\sigma^2}) Dla dowolnego zestawu wektorów macierz = jest dodatnim półfinałem.x1,x2,...,xnx1,x2,...,xnx_1, x_2, ..., x_nK(x1,x2,...,xn)K(x1,x2,...,xn)K(x_1, x_2, ..., x_n)(k(xi,xj))n×n(k(xi,xj))n×n(k(x_i, x_j))_{n \times n} Można przedstawić mapowanie takie jak = .ΦΦ\Phik ( x , …
Widziałem, że ludzie wkładali wiele wysiłku w SVM i jądra i wyglądają całkiem interesująco jako starter w uczeniu maszynowym. Ale jeśli spodziewamy się, że prawie zawsze moglibyśmy znaleźć lepsze rozwiązanie pod względem (głębokiej) sieci neuronowej, jakie jest znaczenie wypróbowania innych metod w tej erze? Oto moje ograniczenie na ten temat. …
Używam SVM do klasyfikacji i próbuję określić optymalne parametry dla jądra liniowego i RBF. W przypadku jądra liniowego używam sprawdzania krzyżowego wyboru parametrów w celu określenia C, a dla jądra RBF używam wyszukiwania siatki w celu określenia C i gamma. Mam 20 (numerycznych) funkcji i 70 przykładów szkoleniowych, które należy …
Jestem trochę zmieszany z różnicą między SVM a perceptronem. Pozwólcie, że spróbuję podsumować moje rozumienie tutaj i proszę o poprawienie tam, gdzie się mylę i uzupełnienie tego, co przegapiłem. Perceptron nie próbuje zoptymalizować „odległości” separacji. Tak długo, jak znajdzie hiperpłaszczyznę oddzielającą dwa zestawy, jest dobra. Z drugiej strony SVM próbuje …
Czy ktoś może mi powiedzieć różnicę między jądrami w SVM: Liniowy Wielomian Gaussowski (RBF) Sigmoid Ponieważ, jak wiemy, jądro służy do mapowania naszej przestrzeni wejściowej na przestrzeń cech o wysokiej wymiarowości. I w tej przestrzeni cech znajdujemy liniowo oddzielalną granicę. Kiedy są używane (pod jakim warunkiem) i dlaczego?
W SVM jądro Gaussa jest zdefiniowane jako: gdzie x, y \ in \ mathbb {R ^ n} . Nie znam jednoznacznego równania \ phi . Chcę wiedzieć.K(x,y)=exp(−∥x−y∥222σ2)=ϕ(x)Tϕ(y)K(x,y)=exp(−‖x−y‖222σ2)=ϕ(x)Tϕ(y)K(x,y)=\exp\left({-\frac{\|x-y\|_2^2}{2\sigma^2}}\right)=\phi(x)^T\phi(y)x,y∈Rnx,y∈Rnx, y\in \mathbb{R^n}ϕϕ\phi Ja też chcę wiedzieć, czy ∑iciϕ(xi)=ϕ(∑icixi)∑iciϕ(xi)=ϕ(∑icixi)\sum_ic_i\phi(x_i)=\phi \left(\sum_ic_ix_i \right) gdzie ci∈Rci∈Rc_i\in \mathbb R . Teraz myślę, że to nie jest równe, ponieważ …
Dlaczego ludzie używają technik programowania kwadratowego (takich jak SMO) podczas obsługi SVM z jądrem? Co jest nie tak z Gradient Descent? Czy nie jest możliwe używanie go z jądrem, czy jest to po prostu zbyt wolne (i dlaczego?). Oto nieco więcej kontekstu: starając się lepiej zrozumieć SVM, użyłem Gradient Descent …
W kontekście uczenia maszynowego i rozpoznawania wzorców istnieje koncepcja o nazwie Kernel Trick . W obliczu problemów, w których jestem proszony o ustalenie, czy funkcja może być funkcją jądra, czy nie, co dokładnie należy zrobić? Czy powinienem najpierw sprawdzić, czy mają one postać trzech lub czterech funkcji jądra, takich jak …
Używamy plików cookie i innych technologii śledzenia w celu poprawy komfortu przeglądania naszej witryny, aby wyświetlać spersonalizowane treści i ukierunkowane reklamy, analizować ruch w naszej witrynie, i zrozumieć, skąd pochodzą nasi goście.
Kontynuując, wyrażasz zgodę na korzystanie z plików cookie i innych technologii śledzenia oraz potwierdzasz, że masz co najmniej 16 lat lub zgodę rodzica lub opiekuna.