Pytania otagowane jako k-means

k-średnie to rodzina metod analizy skupień, w których określasz liczbę spodziewanych klastrów. W przeciwieństwie do hierarchicznych metod analizy skupień.

13
K-oznacza grupowanie mieszanych danych liczbowych i kategorialnych
Mój zestaw danych zawiera szereg atrybutów liczbowych i jeden kategoryczny. Powiedzieć NumericAttr1, NumericAttr2, ..., NumericAttrN, CategoricalAttr, gdzie CategoricalAttrzajmuje jedną z trzech możliwych wartości: CategoricalAttrValue1, CategoricalAttrValue2lub CategoricalAttrValue3. Używam domyślnej implementacji algorytmu klastrowania k-średnich dla Octave https://blog.west.uni-koblenz.de/2012-07-14/a-working-k-means-code-for-octave/ . Działa tylko z danymi numerycznymi. Więc moje pytanie: czy poprawne jest podzielenie atrybutu kategorycznego …

8
Grupowanie współrzędnych położenia geograficznego (łac., Długie pary)
Jakie jest właściwe podejście i algorytm grupowania dla grupowania geolokalizacyjnego? Używam następującego kodu do grupowania współrzędnych geolokalizacji: import numpy as np import matplotlib.pyplot as plt from scipy.cluster.vq import kmeans2, whiten coordinates= np.array([ [lat, long], [lat, long], ... [lat, long] ]) x, y = kmeans2(whiten(coordinates), 3, iter = 20) plt.scatter(coordinates[:,0], coordinates[:,1], …

1
Dlaczego xgboost jest o wiele szybszy niż sklearn GradientBoostingClassifier?
Próbuję wytrenować model zwiększania gradientu na ponad 50 tysiącach przykładów ze 100 funkcjami numerycznymi. XGBClassifierobsługuje 500 drzew w ciągu 43 sekund na mojej maszynie, a GradientBoostingClassifierobsługuje tylko 10 drzew (!) w 1 minutę i 2 sekundy :( Nie zawracałem sobie głowy próbą wyhodowania 500 drzew, ponieważ zajmie to godziny. Używam …
29 scikit-learn  xgboost  gbm  data-mining  classification  data-cleaning  machine-learning  reinforcement-learning  data-mining  bigdata  dataset  nlp  language-model  stanford-nlp  machine-learning  neural-network  deep-learning  randomized-algorithms  machine-learning  beginner  career  xgboost  loss-function  neural-network  software-recommendation  naive-bayes-classifier  classification  scikit-learn  feature-selection  r  random-forest  cross-validation  data-mining  python  scikit-learn  random-forest  churn  python  clustering  k-means  machine-learning  nlp  sentiment-analysis  machine-learning  programming  python  scikit-learn  nltk  gensim  visualization  data  csv  neural-network  deep-learning  descriptive-statistics  machine-learning  supervised-learning  text-mining  orange  data  parameter-estimation  python  pandas  scraping  r  clustering  k-means  unsupervised-learning 



5
powiększ mapę cieplną dna morskiego
Tworzę plik corr()df z oryginalnego pliku df. corr()Df wyszedł 70 x 70 i to jest niemożliwe, aby wyobrazić sobie mapę cieplną ... sns.heatmap(df). Jeśli spróbuję wyświetlić corr = df.corr(), tabela nie pasuje do ekranu i widzę wszystkie korelacje. Czy jest to sposób na wydrukowanie całości dfbez względu na jej rozmiar …
17 visualization  pandas  plotting  machine-learning  neural-network  svm  decision-trees  svm  efficiency  python  linear-regression  machine-learning  nlp  topic-model  lda  named-entity-recognition  naive-bayes-classifier  association-rules  fuzzy-logic  kaggle  deep-learning  tensorflow  inception  classification  feature-selection  feature-engineering  machine-learning  scikit-learn  tensorflow  keras  encoding  nlp  text-mining  nlp  rnn  python  neural-network  feature-extraction  machine-learning  predictive-modeling  python  r  linear-regression  clustering  r  ggplot2  neural-network  neural-network  training  python  neural-network  deep-learning  rnn  predictive-modeling  databases  sql  programming  distribution  dataset  cross-validation  neural-network  deep-learning  rnn  machine-learning  machine-learning  python  deep-learning  data-mining  tensorflow  visualization  tools  sql  embeddings  orange  feature-extraction  unsupervised-learning  gan  machine-learning  python  data-mining  pandas  machine-learning  data-mining  bigdata  apache-spark  apache-hadoop  deep-learning  python  convnet  keras  aggregation  clustering  k-means  r  random-forest  decision-trees  reference-request  visualization  data  pandas  plotting  neural-network  keras  rnn  theano  deep-learning  tensorflow  inception  predictive-modeling  deep-learning  regression  sentiment-analysis  nlp  encoding  deep-learning  python  scikit-learn  lda  convnet  keras  predictive-modeling  regression  overfitting  regression  svm  prediction  machine-learning  similarity  word2vec  information-retrieval  word-embeddings  neural-network  deep-learning  rnn 


2
Szybki k-oznacza jak algorytm dla 10 ^ 10 punktów?
Szukam k-oznacza grupowanie na zbiorze punktów 10-wymiarowych. Haczyk: jest 10 ^ 10 punktów . Szukam tylko środka i wielkości największych klastrów (powiedzmy od 10 do 100 klastrów); Nie dbam o to, w jakim klastrze kończy się każdy punkt. Używanie k-średnich nie jest ważne; Właśnie szukam podobnego efektu, każdy przybliżony średni …

3
Czy są jakieś dobre gotowe modele językowe dla Pythona?
Prototypuję aplikację i potrzebuję modelu językowego, aby obliczyć zakłopotanie w przypadku niektórych wygenerowanych zdań. Czy istnieje jakiś wyuczony model języka w Pythonie, którego można łatwo używać? Coś prostego jak model = LanguageModel('en') p1 = model.perplexity('This is a well constructed sentence') p2 = model.perplexity('Bunny lamp robert junior pancake') assert p1 < …
11 python  nlp  language-model  r  statistics  linear-regression  machine-learning  classification  random-forest  xgboost  python  sampling  data-mining  orange  predictive-modeling  recommender-system  statistics  dimensionality-reduction  pca  machine-learning  python  deep-learning  keras  reinforcement-learning  neural-network  image-classification  r  dplyr  deep-learning  keras  tensorflow  lstm  dropout  machine-learning  sampling  categorical-data  data-imputation  machine-learning  deep-learning  machine-learning-model  dropout  deep-network  pandas  data-cleaning  data-science-model  aggregation  python  neural-network  reinforcement-learning  policy-gradients  r  dataframe  dataset  statistics  prediction  forecasting  r  k-means  python  scikit-learn  labels  python  orange  cloud-computing  machine-learning  neural-network  deep-learning  rnn  recurrent-neural-net  logistic-regression  missing-data  deep-learning  autoencoder  apache-hadoop  time-series  data  preprocessing  classification  predictive-modeling  time-series  machine-learning  python  feature-selection  autoencoder  deep-learning  keras  tensorflow  lstm  word-embeddings  predictive-modeling  prediction  machine-learning-model  machine-learning  classification  binary  theory  machine-learning  neural-network  time-series  lstm  rnn  neural-network  deep-learning  keras  tensorflow  convnet  computer-vision 

1
Konwergencja w metodzie k-średnich Hartigana-Wonga i innych algorytmach
Próbowałem zrozumieć różne algorytmy grupowania k-średnich, które są głównie zaimplementowane w statspakiecie Rjęzyka. Rozumiem algorytm Lloyda i algorytm online MacQueena. Sposób ich rozumienia jest następujący: Algorytm Lloyda: Początkowo wybiera się losowe obserwacje „k”, które będą służyć jako centroidy gromad „k”. Następnie w iteracji następują następujące kroki, aż centroidy zbiegną się. …
10 r  clustering  k-means 
Korzystając z naszej strony potwierdzasz, że przeczytałeś(-aś) i rozumiesz nasze zasady używania plików cookie i zasady ochrony prywatności.
Licensed under cc by-sa 3.0 with attribution required.