Pytania otagowane jako aic

AIC oznacza Akaike Information Criterion, która jest jedną z technik stosowanych do wyboru najlepszego modelu z klasy modeli z wykorzystaniem karanego prawdopodobieństwa. Mniejszy AIC oznacza lepszy model.


8
Algorytmy automatycznego wyboru modelu
Chciałbym zaimplementować algorytm automatycznego wyboru modelu. Zastanawiam się nad regresją stopniową, ale wszystko się uda (musi to być jednak regresja liniowa). Mój problem polega na tym, że nie jestem w stanie znaleźć metodologii ani implementacji typu open source (budzę się w java). Metodologia, którą mam na myśli, mogłaby wyglądać następująco: …


3
Co oznaczają reszty w regresji logistycznej?
Odpowiadając na to pytanie, John Christie zasugerował, że dopasowanie modeli regresji logistycznej należy oceniać poprzez ocenę reszt. Znam sposób interpretowania reszt w OLS, są one w tej samej skali co DV i bardzo wyraźnie różnica między y przewidywana przez model y. Jednak w przypadku regresji logistycznej w przeszłości zwykle badałem …



3
Co oznacza wynik Akaike Information Criterion (AIC) modelu?
Widziałem tu kilka pytań na temat tego, co to znaczy dla laików, ale są one dla mnie zbyt laikalne. Próbuję matematycznie zrozumieć, co oznacza wynik AIC. Ale jednocześnie nie chcę rygorystycznego dowodu, który sprawiłby, że nie widziałbym ważniejszych punktów. Na przykład, jeśli byłby to rachunek różniczkowy, byłbym szczęśliwy z nieskończenie …

2
Regresja logistyczna: zmienne Bernoulliego vs. dwumianowe odpowiedzi
Chcę przeprowadzić regresję logistyczną z następującą odpowiedzią dwumianową oraz z i jako moimi predyktorami. X1X1X_1X2X2X_2 Mogę przedstawić te same dane, co odpowiedzi Bernoulliego w następującym formacie. Wyniki regresji logistycznej dla tych 2 zestawów danych są w większości takie same. Wartości odchylenia i AIC są różne. (Różnica między dewiacją zerową a …

5
Wytyczne AIC w wyborze modelu
Zazwyczaj używam BIC, ponieważ rozumiem, że bardziej ceni parsimony niż AIC. Jednak zdecydowałem się teraz zastosować bardziej kompleksowe podejście i chciałbym również użyć AIC. Wiem, że Raftery (1995) przedstawił dobre wytyczne dla różnic BIC: 0-2 jest słaby, 2-4 jest pozytywnym dowodem na lepszy model jednego itd. Zajrzałem do podręczników i …

3
Czy można obliczyć AIC i BIC dla modeli regresji lasso?
Czy można obliczyć wartości AIC lub BIC dla modeli regresji lasso i innych modeli znormalizowanych, w których parametry tylko częściowo wchodzą do równania. Jak określa się stopnie swobody? Używam R, aby dopasować modele regresji lasso z glmnet()funkcją z glmnetpakietu i chciałbym wiedzieć, jak obliczyć wartości AIC i BIC dla modelu. …
31 r  model-selection  lasso  aic  bic 

5
Jak radzić sobie z hierarchicznymi / zagnieżdżonymi danymi w uczeniu maszynowym
Wyjaśnię mój problem na przykładzie. Załóżmy, że chcesz przewidzieć dochód danej osoby na podstawie niektórych atrybutów: {Wiek, płeć, kraj, region, miasto}. Masz taki zestaw danych szkoleniowych train <- data.frame(CountryID=c(1,1,1,1, 2,2,2,2, 3,3,3,3), RegionID=c(1,1,1,2, 3,3,4,4, 5,5,5,5), CityID=c(1,1,2,3, 4,5,6,6, 7,7,7,8), Age=c(23,48,62,63, 25,41,45,19, 37,41,31,50), Gender=factor(c("M","F","M","F", "M","F","M","F", "F","F","F","M")), Income=c(31,42,71,65, 50,51,101,38, 47,50,55,23)) train CountryID RegionID CityID …
29 regression  machine-learning  multilevel-analysis  correlation  dataset  spatial  paired-comparisons  cross-correlation  clustering  aic  bic  dependent-variable  k-means  mean  standard-error  measurement-error  errors-in-variables  regression  multiple-regression  pca  linear-model  dimensionality-reduction  machine-learning  neural-networks  deep-learning  conv-neural-network  computer-vision  clustering  spss  r  weighted-data  wilcoxon-signed-rank  bayesian  hierarchical-bayesian  bugs  stan  distributions  categorical-data  variance  ecology  r  survival  regression  r-squared  descriptive-statistics  cross-section  maximum-likelihood  factor-analysis  likert  r  multiple-imputation  propensity-scores  distributions  t-test  logit  probit  z-test  confidence-interval  poisson-distribution  deep-learning  conv-neural-network  residual-networks  r  survey  wilcoxon-mann-whitney  ranking  kruskal-wallis  bias  loss-functions  frequentist  decision-theory  risk  machine-learning  distributions  normal-distribution  multivariate-analysis  inference  dataset  factor-analysis  survey  multilevel-analysis  clinical-trials 


3
Czy AIC może porównywać różne typy modeli?
Używam AIC (Akaike's Information Criterion) do porównywania modeli nieliniowych w R. Czy warto porównywać AIC różnych typów modeli? Konkretnie porównuję model dopasowany przez glm do modelu z terminem efektu losowego dopasowanego przez glmer (lme4). Jeśli nie, to czy można dokonać takiego porównania? A może pomysł jest całkowicie nieważny?



Korzystając z naszej strony potwierdzasz, że przeczytałeś(-aś) i rozumiesz nasze zasady używania plików cookie i zasady ochrony prywatności.
Licensed under cc by-sa 3.0 with attribution required.