Kiedy trenujesz sieć neuronową, jaką różnicę ma ustawienie: Wielkość partii z i liczby iteracjibzazaabbb w porównaniu do wielkości partii do i liczby iteracji doddodocrered gdziea b = c dzab=dore ab = cd ? Innymi słowy, zakładając, że trenujemy sieć neuronową z taką samą liczbą przykładów szkoleniowych, jak ustawić optymalny rozmiar …
Chciałbym wiedzieć, czy są jakieś / jakieś zalety stosowania próbkowania warstwowego zamiast próbkowania losowego, podczas dzielenia oryginalnego zestawu danych na zestaw szkoleniowy i testowy do klasyfikacji. Ponadto, czy próbkowanie warstwowe wprowadza więcej uprzedzeń do klasyfikatora niż próbkowanie losowe? Aplikacja, dla której chciałbym zastosować próbkowanie warstwowe do przygotowania danych, jest klasyfikatorem …
Mam zestaw danych z N ~ 5000 i brakuje mi około 1/2 co najmniej jednej ważnej zmiennej. Główną metodą analityczną będą proporcjonalne zagrożenia Coxa. Planuję zastosować wielokrotne przypisanie. Podzielę się również na pociąg i zestaw testowy. Czy należy podzielić dane, a następnie przypisać osobno, czy przypisać, a następnie podzielić? Jeżeli …
Scikit ma CalibratedClassifierCV , co pozwala nam skalibrować nasze modele na konkretnej parze X, y. Stwierdza to również jasnodata for fitting the classifier and for calibrating it must be disjoint. Jeśli muszą być rozłączne, czy uzasadnione jest przeszkolenie klasyfikatora w następujących kwestiach? model = CalibratedClassifierCV(my_classifier) model.fit(X_train, y_train) Obawiam się, że …
Eksperymentuję z algorytmem maszyny do zwiększania gradientu za pośrednictwem caretpakietu w R. Korzystając z małego zestawu danych o przyjęciach na studia, uruchomiłem następujący kod: library(caret) ### Load admissions dataset. ### mydata <- read.csv("http://www.ats.ucla.edu/stat/data/binary.csv") ### Create yes/no levels for admission. ### mydata$admit_factor[mydata$admit==0] <- "no" mydata$admit_factor[mydata$admit==1] <- "yes" ### Gradient boosting machine …
Jestem trochę zdezorientowany: w jaki sposób wyniki wyszkolonego Modelu za pomocą karetki mogą różnić się od modelu w oryginalnym opakowaniu? Czytałem, czy wstępne przetwarzanie jest potrzebne przed prognozowaniem przy użyciu FinalModel z RandomForest z pakietem Caret? ale nie używam tutaj żadnego przetwarzania wstępnego. Trenowałem różne Losowe Lasy, używając pakietu Caret …
Przeglądałem tutaj różne wątki, ale nie sądzę, aby na moje dokładne pytanie zostało udzielone odpowiedzi. Mam zbiór danych obejmujący ~ 50 000 studentów i ich czas na rezygnację. Zamierzam przeprowadzić proporcjonalną regresję zagrożeń z dużą liczbą potencjalnych zmiennych towarzyszących. Zamierzam również przeprowadzić regresję logistyczną w przypadku porzucenia / pozostania w. …
Wcześniej uczestniczyłem w kursie ML, ale teraz, kiedy pracuję nad projektami związanymi z ML w mojej pracy, ciężko walczę o jego zastosowanie. Jestem pewien, że rzeczy, które robię, były wcześniej badane / zajmowane, ale nie mogę znaleźć konkretnych tematów. Wszystkie przykłady uczenia maszynowego, które znajduję w Internecie, są bardzo proste …
Zasadniczo istnieją dwa typowe sposoby uczenia się przeciwko ogromnym zestawom danych (gdy napotykasz ograniczenia czasowe / przestrzenne): Oszukiwanie :) - użyj tylko „zarządzalnego” podzbioru do treningu. Utrata dokładności może być nieistotna z uwagi na prawo malejących zwrotów - predykcyjne działanie modelu często spłaszcza się na długo przed włączeniem do niego …
Używamy plików cookie i innych technologii śledzenia w celu poprawy komfortu przeglądania naszej witryny, aby wyświetlać spersonalizowane treści i ukierunkowane reklamy, analizować ruch w naszej witrynie, i zrozumieć, skąd pochodzą nasi goście.
Kontynuując, wyrażasz zgodę na korzystanie z plików cookie i innych technologii śledzenia oraz potwierdzasz, że masz co najmniej 16 lat lub zgodę rodzica lub opiekuna.