Pytania otagowane jako residuals

Resztki modelu to wartości rzeczywiste minus wartości prognozowane. Wiele modeli statystycznych przyjmuje założenia dotyczące błędu, który jest szacowany na podstawie reszt.

1
Założenia LASSO
W scenariuszu regresji LASSO, w którym y=Xβ+ϵy=Xβ+ϵy= X \beta + \epsilon , a oszacowania LASSO są podane przez następujący problem optymalizacji minβ||y−Xβ||+τ||β||1minβ||y−Xβ||+τ||β||1 \min_\beta ||y - X \beta|| + \tau||\beta||_1 Czy są jakieś założenia dystrybucyjne dotyczące ϵϵ\epsilon ? W scenariuszu OLS można oczekiwać, że ϵϵ\epsilon są niezależne i zwykle dystrybuowane. Czy …

1
Czy autokorelowane wzorce resztkowe pozostają nawet w modelach z odpowiednimi strukturami korelacji i jak wybrać najlepsze modele?
Kontekst To pytanie używa R, ale dotyczy ogólnych problemów statystycznych. Analizuję wpływ czynników umieralności (% umieralności z powodu chorób i pasożytnictwa) na tempo wzrostu populacji ćmy w czasie, gdy populacje larw pobierano z 12 miejsc raz w roku przez 8 lat. Dane dotyczące tempa wzrostu populacji pokazują wyraźny, ale nieregularny …

4
Potwierdzenie rozkładu reszt w regresji liniowej
Załóżmy, że przeprowadziliśmy prostą regresję liniową y=β0+β1x+uy=β0+β1x+uy=\beta_0+\beta_1x+u , zapisaliśmy reszty ui^ui^\hat{u_i} narysowaliśmy histogram rozkładu reszt. Jeśli otrzymamy coś, co wygląda jak dobrze znana dystrybucja, czy możemy założyć, że nasz termin błędu ma tę dystrybucję? Powiedzmy, że jeśli dowiemy się, że reszty przypominają rozkład normalny, czy uzasadnione jest przyjęcie normalności terminu …


1
Pearson VS Deviance Residuals w regresji logistycznej
Wiem, że znormalizowane pozostałości Pearson uzyskuje się w tradycyjny probabilistyczny sposób: ri=yi−πiπi(1−πi)−−−−−---√rja=yja-πjaπja(1-πja) r_i = \frac{y_i-\pi_i}{\sqrt{\pi_i(1-\pi_i)}} i Pozostałości dewiacji są uzyskiwane w bardziej statystyczny sposób (udział każdego punktu w prawdopodobieństwie): reja= sja- 2 [ yjalogπja^+(1−yi)log(1−πi)]−−−−−−−−−−−−−−−−−−−−−−−−−−√di=si−2[yilog⁡πi^+(1−yi)log⁡(1−πi)] d_i = s_i \sqrt{-2[y_i \log \hat{\pi_i} + (1 - y_i)\log(1-\pi_i)]} gdzie sisis_i = 1 jeśli yiyiy_i …

2
Resztki Pearsona
Pytanie początkującego o resztki Pearsona w kontekście testu chi-kwadrat na dobroć dopasowania: Oprócz statystyki testowej chisq.testfunkcja R zgłasza resztkową wartość Pearsona: (obs - exp) / sqrt(exp) Rozumiem, dlaczego przyglądanie się różnicy między wartościami obserwowanymi i oczekiwanymi nie jest tak pouczające, ponieważ mniejsza próbka spowoduje mniejszą różnicę. Chciałbym jednak dowiedzieć się …

3
Czy w ogóle uzasadnione jest rozwarstwienie zbioru danych według wielkości pozostałości i wykonanie porównania dwóch prób?
Uważam, że jest to metoda ad hoc i wydaje mi się bardzo podejrzana, ale być może czegoś mi brakuje. Widziałem to w regresji wielokrotnej, ale bądźmy prostymi: yi=β0+β1xi+εiyi=β0+β1xi+εi y_{i} = \beta_{0} + \beta_{1} x_{i} + \varepsilon_{i} Teraz weź pozostałości z dopasowanego modelu ei=yi−(β^0+β^1xi)ei=yi−(β^0+β^1xi) e_{i} = y_{i} - \left( \hat{\beta}_{0} + …

1
Jakiej metody wielokrotnego porównania użyć w modelu Lmer: lsmeans czy glht?
Analizuję zestaw danych przy użyciu modelu efektów mieszanych z jednym ustalonym efektem (warunkiem) i dwoma efektami losowymi (uczestnik ze względu na projekt i parę wewnątrz przedmiotu). Model ten został wygenerowany z lme4pakietu: exp.model<-lmer(outcome~condition+(1|participant)+(1|pair),data=exp). Następnie wykonałem test współczynnika wiarygodności tego modelu względem modelu bez ustalonego efektu (warunku) i mam znaczącą różnicę. …

2
Wyprowadzenie transformacji normalizującej dla GLM
\newcommand{\E}{\mathbb{E}} Jaka jest transformacja normalizująca dla rodziny wykładniczej pochodny? A(⋅)=∫duV1/3(μ)A(⋅)=∫duV1/3(μ)A(\cdot) = \displaystyle\int\frac{du}{V^{1/3}(\mu)} Mówiąc dokładniej : Próbowałem postępować zgodnie ze szkicem rozszerzenia Taylora na stronie 3, slajd 1 tutaj, ale mam kilka pytań. Gdy z rodziny wykładniczej, transformacja h (X) i \ kappa _i oznaczają i ^ {th} kumulant, slajdy twierdzą, …

3
Prognozowanie wariancji danych heteroscedastycznych
Próbuję wykonać regresję danych heteroscedastycznych, w których próbuję przewidzieć wariancje błędów, a także wartości średnie w odniesieniu do modelu liniowego. Coś takiego: y(x,t)ξ(x,t)y¯(x,t)σ(x,t)=y¯(x,t)+ξ(x,t),∼N(0,σ(x,t)),=y0+ax+bt,=σ0+cx+dt.y(x,t)=y¯(x,t)+ξ(x,t),ξ(x,t)∼N(0,σ(x,t)),y¯(x,t)=y0+ax+bt,σ(x,t)=σ0+cx+dt.\begin{align}\\ y\left(x,t\right) &= \bar{y}\left(x,t\right)+\xi\left(x,t\right),\\ \xi\left(x,t\right) &\sim N\left(0,\sigma\left(x,t\right)\right),\\ \bar{y}\left(x,t\right) &= y_{0}+ax+bt,\\ \sigma\left(x,t\right) &= \sigma_{0}+cx+dt. \end{align} Słowami, dane składa się z powtarzalnych pomiarów przy różnych wartościach i . Sądzę pomiary …



4
Dlaczego mówimy „szczątkowy błąd standardowy”?
Błąd standardowy to szacowane odchylenie standardowe estymatora dla parametru .σ^(θ^)σ^(θ^)\hat \sigma(\hat\theta)θ^θ^\hat\thetaθθ\theta Dlaczego szacowane odchylenie standardowe reszt określa się jako „resztkowy błąd standardowy” (np. Na wyjściu funkcji R summary.lm), a nie „resztowe odchylenie standardowe”? Jakie parametry szacunkowe wyposażamy tutaj w standardowy błąd? Czy uważamy każdą resztę za estymator dla „jego” terminu …



Korzystając z naszej strony potwierdzasz, że przeczytałeś(-aś) i rozumiesz nasze zasady używania plików cookie i zasady ochrony prywatności.
Licensed under cc by-sa 3.0 with attribution required.