Pytania otagowane jako predictive-modeling

Techniki statystyczne stosowane do przewidywania wyników.

8
Dlaczego nadmierne dopasowanie jest złe w uczeniu maszynowym?
Logika często stwierdza, że ​​nadmierne dopasowanie modelu ogranicza jego możliwości uogólnienia, chociaż może to oznaczać jedynie, że nadmierne dopasowanie powstrzymuje model przed poprawą po określonej złożoności. Czy nadmierne dopasowanie powoduje pogorszenie modeli bez względu na złożoność danych, a jeśli tak, to dlaczego tak jest? Powiązane: Kontynuacja pytania powyżej: „ Kiedy …

4
Czy model powinien zostać ponownie przeszkolony, jeśli dostępne są nowe obserwacje?
Nie znalazłem więc żadnej literatury na ten temat, ale wydaje się, że warto coś przemyśleć: Jakie są najlepsze praktyki w szkoleniu i optymalizacji modeli, jeśli dostępne są nowe obserwacje? Czy jest jakiś sposób na określenie okresu / częstotliwości ponownego szkolenia modelu, zanim prognozy zaczną się obniżać? Czy przesadne jest optymalizowanie …

2
Przewidywanie słowa za pomocą modelu Word2vec
Biorąc pod uwagę zdanie: „Kiedy otworzę drzwi ?? , zacznie się automatycznie nagrzewać” Chciałbym uzyskać listę możliwych słów w? z prawdopodobieństwem. Podstawową koncepcją stosowaną w modelu word2vec jest „przewidywanie” słowa na podstawie otaczającego kontekstu. Po zbudowaniu modelu, jaka jest właściwa operacja wektorów kontekstowych, aby wykonać moje zadanie przewidywania nowych zdań? …

1
Prognozowanie szeregów czasowych za pomocą LSTM: Znaczenie unieruchomienia szeregów czasowych
W tym linku dotyczącym stacjonarności i różnicowania wspomniano, że modele takie jak ARIMA wymagają stacjonarnych szeregów czasowych do prognozowania, ponieważ jego właściwości statystyczne, takie jak średnia, wariancja, autokorelacja itp., Są stałe w czasie. Ponieważ sieci RNN mają lepszą zdolność do uczenia się relacji nieliniowych ( jak podano tutaj: Obietnica nawracających …

5
powiększ mapę cieplną dna morskiego
Tworzę plik corr()df z oryginalnego pliku df. corr()Df wyszedł 70 x 70 i to jest niemożliwe, aby wyobrazić sobie mapę cieplną ... sns.heatmap(df). Jeśli spróbuję wyświetlić corr = df.corr(), tabela nie pasuje do ekranu i widzę wszystkie korelacje. Czy jest to sposób na wydrukowanie całości dfbez względu na jej rozmiar …
17 visualization  pandas  plotting  machine-learning  neural-network  svm  decision-trees  svm  efficiency  python  linear-regression  machine-learning  nlp  topic-model  lda  named-entity-recognition  naive-bayes-classifier  association-rules  fuzzy-logic  kaggle  deep-learning  tensorflow  inception  classification  feature-selection  feature-engineering  machine-learning  scikit-learn  tensorflow  keras  encoding  nlp  text-mining  nlp  rnn  python  neural-network  feature-extraction  machine-learning  predictive-modeling  python  r  linear-regression  clustering  r  ggplot2  neural-network  neural-network  training  python  neural-network  deep-learning  rnn  predictive-modeling  databases  sql  programming  distribution  dataset  cross-validation  neural-network  deep-learning  rnn  machine-learning  machine-learning  python  deep-learning  data-mining  tensorflow  visualization  tools  sql  embeddings  orange  feature-extraction  unsupervised-learning  gan  machine-learning  python  data-mining  pandas  machine-learning  data-mining  bigdata  apache-spark  apache-hadoop  deep-learning  python  convnet  keras  aggregation  clustering  k-means  r  random-forest  decision-trees  reference-request  visualization  data  pandas  plotting  neural-network  keras  rnn  theano  deep-learning  tensorflow  inception  predictive-modeling  deep-learning  regression  sentiment-analysis  nlp  encoding  deep-learning  python  scikit-learn  lda  convnet  keras  predictive-modeling  regression  overfitting  regression  svm  prediction  machine-learning  similarity  word2vec  information-retrieval  word-embeddings  neural-network  deep-learning  rnn 

5
Scalanie rzadkich i gęstych danych w uczeniu maszynowym w celu poprawy wydajności
Mam rzadkie cechy, które są predykcyjne, mam też pewne gęste cechy, które są również predykcyjne. Muszę połączyć te funkcje razem, aby poprawić ogólną wydajność klasyfikatora. Rzecz w tym, że kiedy próbuję połączyć je ze sobą, cechy gęste mają tendencję do dominacji nad cechami rzadkimi, a zatem dają tylko 1% poprawę …

3
Jak przewidzieć prawdopodobieństwo w xgboost?
Poniższa funkcja przewidywania podaje również wartości -ve, więc nie może to być prawdopodobieństwo. param <- list(max.depth = 5, eta = 0.01, objective="binary:logistic",subsample=0.9) bst <- xgboost(param, data = x_mat, label = y_mat,nround = 3000) pred_s <- predict(bst, x_mat_s2) I google i próbowałem, pred_s <- predict(bst, x_mat_s2,type="response") ale to nie działało. Pytanie …


1
Hashing Trick - co się właściwie dzieje
Kiedy algorytmy ML, np. Vowpal Wabbit lub niektóre maszyny do faktoryzacji wygrywające w konkursach współczynnika klikalności ( Kaggle ), wspominają, że funkcje są „mieszane”, co to właściwie oznacza dla modelu? Powiedzmy, że istnieje zmienna reprezentująca identyfikator dodania internetowego, który przyjmuje wartości takie jak „236BG231”. Rozumiem zatem, że ta funkcja jest …

1
Ile komórek LSTM powinienem użyć?
Czy istnieją jakieś praktyczne zasady (lub rzeczywiste zasady) dotyczące minimalnej, maksymalnej i „rozsądnej” liczby komórek LSTM, których powinienem użyć? W szczególności odnoszę się do BasicLSTMCell z TensorFlow i num_unitswłasności. Załóżmy, że mam problem z klasyfikacją zdefiniowany przez: t - number of time steps n - length of input vector in …
12 rnn  machine-learning  r  predictive-modeling  random-forest  python  language-model  sentiment-analysis  encoding  machine-learning  deep-learning  neural-network  dataset  caffe  classification  xgboost  multiclass-classification  unbalanced-classes  time-series  descriptive-statistics  python  r  clustering  machine-learning  python  deep-learning  tensorflow  machine-learning  python  predictive-modeling  probability  scikit-learn  svm  machine-learning  python  classification  gradient-descent  regression  research  python  neural-network  deep-learning  convnet  keras  python  tensorflow  machine-learning  deep-learning  tensorflow  python  r  bigdata  visualization  rstudio  pandas  pyspark  dataset  time-series  multilabel-classification  machine-learning  neural-network  ensemble-modeling  kaggle  machine-learning  linear-regression  cnn  convnet  machine-learning  tensorflow  association-rules  machine-learning  predictive-modeling  training  model-selection  neural-network  keras  deep-learning  deep-learning  convnet  image-classification  predictive-modeling  prediction  machine-learning  python  classification  predictive-modeling  scikit-learn  machine-learning  python  random-forest  sampling  training  recommender-system  books  python  neural-network  nlp  deep-learning  tensorflow  python  matlab  information-retrieval  search  search-engine  deep-learning  convnet  keras  machine-learning  python  cross-validation  sampling  machine-learning 

3
Czy są jakieś dobre gotowe modele językowe dla Pythona?
Prototypuję aplikację i potrzebuję modelu językowego, aby obliczyć zakłopotanie w przypadku niektórych wygenerowanych zdań. Czy istnieje jakiś wyuczony model języka w Pythonie, którego można łatwo używać? Coś prostego jak model = LanguageModel('en') p1 = model.perplexity('This is a well constructed sentence') p2 = model.perplexity('Bunny lamp robert junior pancake') assert p1 < …
11 python  nlp  language-model  r  statistics  linear-regression  machine-learning  classification  random-forest  xgboost  python  sampling  data-mining  orange  predictive-modeling  recommender-system  statistics  dimensionality-reduction  pca  machine-learning  python  deep-learning  keras  reinforcement-learning  neural-network  image-classification  r  dplyr  deep-learning  keras  tensorflow  lstm  dropout  machine-learning  sampling  categorical-data  data-imputation  machine-learning  deep-learning  machine-learning-model  dropout  deep-network  pandas  data-cleaning  data-science-model  aggregation  python  neural-network  reinforcement-learning  policy-gradients  r  dataframe  dataset  statistics  prediction  forecasting  r  k-means  python  scikit-learn  labels  python  orange  cloud-computing  machine-learning  neural-network  deep-learning  rnn  recurrent-neural-net  logistic-regression  missing-data  deep-learning  autoencoder  apache-hadoop  time-series  data  preprocessing  classification  predictive-modeling  time-series  machine-learning  python  feature-selection  autoencoder  deep-learning  keras  tensorflow  lstm  word-embeddings  predictive-modeling  prediction  machine-learning-model  machine-learning  classification  binary  theory  machine-learning  neural-network  time-series  lstm  rnn  neural-network  deep-learning  keras  tensorflow  convnet  computer-vision 



3
Jakiej regresji użyć do obliczenia wyniku wyborów w systemie wielopartyjnym?
Chcę przewidzieć wynik wyborów parlamentarnych. Mój wynik to% otrzymany przez każdą ze stron. Istnieje więcej niż 2 strony, więc regresja logistyczna nie jest realną opcją. Mógłbym dokonać osobnej regresji dla każdej ze stron, ale w takim przypadku wyniki byłyby w pewien sposób niezależne od siebie. Nie zapewniłoby to, że suma …

3
Związek między KS, AUROC i Gini
Wspólne statystyki walidacji modelu, takie jak test Kołmogorowa – Smirnowa (KS), AUROC i współczynnik Giniego, są funkcjonalnie powiązane. Moje pytanie dotyczy jednak udowodnienia, w jaki sposób wszystkie są ze sobą powiązane. Jestem ciekawy, czy ktoś może mi pomóc udowodnić te relacje. Nie udało mi się znaleźć niczego w Internecie, ale …

Korzystając z naszej strony potwierdzasz, że przeczytałeś(-aś) i rozumiesz nasze zasady używania plików cookie i zasady ochrony prywatności.
Licensed under cc by-sa 3.0 with attribution required.