Pytania otagowane jako unbiased-estimator

Odnosi się do estymatora parametru populacji, który „osiąga wartość prawdziwą” średnio. Oznacza to, że funkcja obserwowanych danych jest obiektywnym estymatorem parametru if . Najprostszym przykładem obiektywnego estymatora jest średnia próby jako estymator średniej populacji. θ^θmi(θ^)=θ

1
Bezstronny estymator z minimalną wariancją dla
Niech będzie losową próbką o rozkładzie dla . To znaczy,X1,...,XnX1,...,Xn X_1, ...,X_nGeometric(θ)Geometric(θ)Geometric(\theta)0&lt;θ&lt;10&lt;θ&lt;10<\theta<1 pθ(x)=θ(1−θ)x−1I{1,2,...}(x)pθ(x)=θ(1−θ)x−1I{1,2,...}(x)p_{\theta}(x)=\theta(1-\theta)^{x-1} I_{\{1,2,...\}}(x) Znajdź obiektywny estymator o minimalnej wariancji dlag(θ)=1θg(θ)=1θg(\theta)=\frac{1}{\theta} Moja próba: Ponieważ rozkład geometryczny pochodzi z rodziny wykładniczej, statystyki jest kompletna i wystarczająca dla . Ponadto, jeśli jest estymatorem dla , jest on bezstronny. Dlatego według twierdzenia Rao-Blackwella …

1
Odchylenie estymatorów maksymalnego prawdopodobieństwa dla regresji logistycznej
Chciałbym zrozumieć kilka faktów dotyczących estymatorów maksymalnego prawdopodobieństwa (MLE) dla regresji logistycznych. Czy to prawda, że ​​ogólnie MLE regresji logistycznej jest stronniczy? Powiedziałbym tak". Wiem na przykład, że wymiar próbki jest związany z asymptotycznym nastawieniem MLE. Czy znasz jakieś podstawowe przykłady tego zjawiska? Jeśli MLE jest stronniczy, czy prawdą jest, …

2
Poprawa minimalnego estymatora
Załóżmy, że mam pozytywne parametry oszacować i odpowiadające im pakietów szacunki produkowane przez estymatorów , tj. , i tak dalej.nnnμ1,μ2,...,μnμ1,μ2,...,μn\mu_1,\mu_2,...,\mu_nnnnμ1^,μ2^,...,μn^μ1^,μ2^,...,μn^\hat{\mu_1},\hat{\mu_2},...,\hat{\mu_n}E[μ1^]=μ1E[μ1^]=μ1\mathrm E[\hat{\mu_1}]=\mu_1E[μ2^]=μ2E[μ2^]=μ2\mathrm E[\hat{\mu_2}]=\mu_2 Chciałbym oszacować podstawie dostępnych szacunków. Najwyraźniej naiwny estymator jest tendencyjnie niższy niż min(μ1,μ2,...,μn)min(μ1,μ2,...,μn)\mathrm{min}(\mu_1,\mu_2,...,\mu_n)min(μ1^,μ2^,...,μn^)min(μ1^,μ2^,...,μn^)\mathrm{min}(\hat{\mu_1},\hat{\mu_2},...,\hat{\mu_n})E[min(μ1^,μ2^,...,μn^)]≤min(μ1,μ2,...,μn)E[min(μ1^,μ2^,...,μn^)]≤min(μ1,μ2,...,μn)\mathrm E[\mathrm{min}(\hat{\mu_1},\hat{\mu_2},...,\hat{\mu_n})]\leq \mathrm{min}(\mu_1,\mu_2,...,\mu_n) Załóżmy, że mam pod ręką macierz kowariancji odpowiednich estymatorów . Czy można uzyskać …

1
Który model głębokiego uczenia może klasyfikować kategorie, które nie wykluczają się wzajemnie
Przykłady: w opisie stanowiska mam zdanie: „Starszy inżynier Java w Wielkiej Brytanii”. Chcę użyć modelu głębokiego uczenia się, aby przewidzieć go jako 2 kategorie: English i IT jobs. Jeśli użyję tradycyjnego modelu klasyfikacji, może on przewidzieć tylko 1 etykietę z softmaxfunkcją na ostatniej warstwie. Dlatego mogę użyć 2 modelowych sieci …
9 machine-learning  deep-learning  natural-language  tensorflow  sampling  distance  non-independent  application  regression  machine-learning  logistic  mixed-model  control-group  crossover  r  multivariate-analysis  ecology  procrustes-analysis  vegan  regression  hypothesis-testing  interpretation  chi-squared  bootstrap  r  bioinformatics  bayesian  exponential  beta-distribution  bernoulli-distribution  conjugate-prior  distributions  bayesian  prior  beta-distribution  covariance  naive-bayes  smoothing  laplace-smoothing  distributions  data-visualization  regression  probit  penalized  estimation  unbiased-estimator  fisher-information  unbalanced-classes  bayesian  model-selection  aic  multiple-regression  cross-validation  regression-coefficients  nonlinear-regression  standardization  naive-bayes  trend  machine-learning  clustering  unsupervised-learning  wilcoxon-mann-whitney  z-score  econometrics  generalized-moments  method-of-moments  machine-learning  conv-neural-network  image-processing  ocr  machine-learning  neural-networks  conv-neural-network  tensorflow  r  logistic  scoring-rules  probability  self-study  pdf  cdf  classification  svm  resampling  forecasting  rms  volatility-forecasting  diebold-mariano  neural-networks  prediction-interval  uncertainty 
Korzystając z naszej strony potwierdzasz, że przeczytałeś(-aś) i rozumiesz nasze zasady używania plików cookie i zasady ochrony prywatności.
Licensed under cc by-sa 3.0 with attribution required.