Pytania otagowane jako loss-functions

Funkcja używana do kwantyfikacji różnicy między zaobserwowanymi danymi a przewidywanymi wartościami zgodnie z modelem. Minimalizacja funkcji strat jest sposobem na oszacowanie parametrów modelu.

5
Jaka funkcja strat dla zadań klasyfikacyjnych wielu klas i wielu etykiet w sieciach neuronowych?
Uczę sieci neuronowej, aby klasyfikować zestaw obiektów do n-klas. Każdy obiekt może należeć do wielu klas jednocześnie (wiele klas, wiele etykiet). Czytałem, że w przypadku problemów wieloklasowych ogólnie zaleca się stosowanie softmax i kategorycznej entropii krzyżowej jako funkcji straty zamiast mse i mniej więcej rozumiem dlaczego. W przypadku mojego problemu …

3
Uczenie maszynowe: czy powinienem stosować kategoryczną utratę entropii krzyżowej lub utratę entropii krzyżowej binarnej do prognoz binarnych?
Przede wszystkim zdałem sobie sprawę, że jeśli muszę wykonać przewidywania binarne, muszę utworzyć co najmniej dwie klasy, wykonując kodowanie „na gorąco”. Czy to jest poprawne? Czy jednak binarna entropia krzyżowa dotyczy tylko predykcji z tylko jedną klasą? Gdybym miał zastosować kategoryczną utratę entropii krzyżowej, która zwykle występuje w większości bibliotek …

5
Funkcja kosztu sieci neuronowej jest niewypukła?
Funkcja kosztu sieci neuronowej to J(W,b)J(W,b)J(W,b) i twierdzi się, że nie jest wypukła . Nie do końca rozumiem, dlaczego tak jest, ponieważ, jak widzę, jest dość podobny do funkcji kosztu regresji logistycznej, prawda? Jeśli nie jest wypukła, to pochodna drugiego rzędu ∂J∂W&lt;0∂J∂W&lt;0\frac{\partial J}{\partial W} < 0, prawda? AKTUALIZACJA Dzięki poniższym …

2
Funkcja kosztu w regresji liniowej OLS
Jestem trochę mylony z wykładem na temat regresji liniowej wygłoszonym przez Andrew Ng na Coursera na temat uczenia maszynowego. Tam podał funkcję kosztu, która minimalizuje sumę kwadratów jako: 12m∑i=1m(hθ(X(i))−Y(i))212m∑i=1m(hθ(X(i))−Y(i))2 \frac{1}{2m} \sum _{i=1}^m \left(h_\theta(X^{(i)})-Y^{(i)}\right)^2 Rozumiem gdzie 1212\frac{1}{2} pochodzi z. Myślę, że zrobił to tak, że gdy wykonał pochodną na kwadracie, 2 …


4
Która funkcja strat jest prawidłowa dla regresji logistycznej?
Czytałem o dwóch wersjach funkcji straty dla regresji logistycznej, która z nich jest poprawna i dlaczego? Z uczenia maszynowego , Zhou ZH (po chińsku), z :β=(w,b) and βTx=wTx+bβ=(w,b) and βTx=wTx+b\beta = (w, b)\text{ and }\beta^Tx=w^Tx +b l(β)=∑i=1m(−yiβTxi+ln(1+eβTxi))(1)(1)l(β)=∑i=1m(−yiβTxi+ln⁡(1+eβTxi))l(\beta) = \sum\limits_{i=1}^{m}\Big(-y_i\beta^Tx_i+\ln(1+e^{\beta^Tx_i})\Big) \tag 1 Z mojego kursu na uczelni, z :zi=yif(xi)=yi(wTxi+b)zi=yif(xi)=yi(wTxi+b)z_i = y_if(x_i)=y_i(w^Tx_i …

5
Jak radzić sobie z hierarchicznymi / zagnieżdżonymi danymi w uczeniu maszynowym
Wyjaśnię mój problem na przykładzie. Załóżmy, że chcesz przewidzieć dochód danej osoby na podstawie niektórych atrybutów: {Wiek, płeć, kraj, region, miasto}. Masz taki zestaw danych szkoleniowych train &lt;- data.frame(CountryID=c(1,1,1,1, 2,2,2,2, 3,3,3,3), RegionID=c(1,1,1,2, 3,3,4,4, 5,5,5,5), CityID=c(1,1,2,3, 4,5,6,6, 7,7,7,8), Age=c(23,48,62,63, 25,41,45,19, 37,41,31,50), Gender=factor(c("M","F","M","F", "M","F","M","F", "F","F","F","M")), Income=c(31,42,71,65, 50,51,101,38, 47,50,55,23)) train CountryID RegionID CityID …
29 regression  machine-learning  multilevel-analysis  correlation  dataset  spatial  paired-comparisons  cross-correlation  clustering  aic  bic  dependent-variable  k-means  mean  standard-error  measurement-error  errors-in-variables  regression  multiple-regression  pca  linear-model  dimensionality-reduction  machine-learning  neural-networks  deep-learning  conv-neural-network  computer-vision  clustering  spss  r  weighted-data  wilcoxon-signed-rank  bayesian  hierarchical-bayesian  bugs  stan  distributions  categorical-data  variance  ecology  r  survival  regression  r-squared  descriptive-statistics  cross-section  maximum-likelihood  factor-analysis  likert  r  multiple-imputation  propensity-scores  distributions  t-test  logit  probit  z-test  confidence-interval  poisson-distribution  deep-learning  conv-neural-network  residual-networks  r  survey  wilcoxon-mann-whitney  ranking  kruskal-wallis  bias  loss-functions  frequentist  decision-theory  risk  machine-learning  distributions  normal-distribution  multivariate-analysis  inference  dataset  factor-analysis  survey  multilevel-analysis  clinical-trials 

1
XGBoost Loss function Approximation With Taylor Expansion
Na przykład, ma funkcję celu modelu XGBoost w sprawie ttt „tą iterację procedury: L(t)=∑i=1nℓ(yi,y^(t−1)i+ft(xi))+Ω(ft)L(t)=∑i=1nℓ(yi,y^i(t−1)+ft(xi))+Ω(ft)\mathcal{L}^{(t)}=\sum_{i=1}^n\ell(y_i,\hat{y}_i^{(t-1)}+f_t(\mathbf{x}_i))+\Omega(f_t) gdzie ℓℓ\ell jest utrata funkcji, ftftf_t jest ttt -tym wyjście drzewa i ΩΩ\Omega jest regularyzacji. Jednym z (wielu) kluczowych kroków do szybkiego obliczenia jest przybliżenie: L(t)≈∑i=1nℓ(yi,y^(t−1)i)+gtft(xi)+12hif2t(xi)+Ω(ft),L(t)≈∑i=1nℓ(yi,y^i(t−1))+gtft(xi)+12hift2(xi)+Ω(ft),\mathcal{L}^{(t)}\approx \sum_{i=1}^n\ell(y_i,\hat{y}_i^{(t-1)})+g_tf_t(\mathbf{x}_i)+\frac{1}{2}h_if_t^2(\mathbf{x}_i)+\Omega(f_t), w którym gigig_i i hihih_i są to pierwsze i …

3
Jakie są skutki wyboru różnych funkcji strat w klasyfikacji do przybliżonej straty 0-1
Wiemy, że niektóre funkcje celu są łatwiejsze do optymalizacji, a niektóre są trudne. I jest wiele funkcji utraty, których chcemy używać, ale trudnych w użyciu, na przykład utrata 0-1. Dlatego znajdziemy kilka funkcji utraty proxy do wykonania pracy. Na przykład używamy utraty zawiasu lub straty logistycznej do „przybliżenia” utraty 0-1. …


1
Strata treningowa spada i rośnie. Co się dzieje?
Moja strata treningowa spada, a potem znowu rośnie. To jest bardzo dziwne. Strata weryfikacji krzyżowej śledzi utratę treningu. Co się dzieje? Mam dwa skumulowane LSTMS w następujący sposób (na Keras): model = Sequential() model.add(LSTM(512, return_sequences=True, input_shape=(len(X[0]), len(nd.char_indices)))) model.add(Dropout(0.2)) model.add(LSTM(512, return_sequences=False)) model.add(Dropout(0.2)) model.add(Dense(len(nd.categories))) model.add(Activation('sigmoid')) model.compile(loss='binary_crossentropy', optimizer='adadelta') Trenuję to przez 100 epok: …

3
Gradient utraty zawiasu
Próbuję zaimplementować podstawowe zejście gradientu i testuję go za pomocą funkcji utraty zawiasu, tj. . Jestem jednak zdezorientowany co do gradientu utraty zawiasu. Mam wrażenie, że tak jestlzawias= maks. ( 0 , 1 - y x ⋅ w )lhinge=max(0,1−y x⋅w)l_{\text{hinge}} = \max(0,1-y\ \boldsymbol{x}\cdot\boldsymbol{w}) ∂∂wlzawias= { - y x0jeżeli Y x …

2
Regresja kwantowa: funkcja straty
Próbuję zrozumieć regresję kwantową, ale jedną rzeczą, która sprawia, że ​​cierpię, jest wybór funkcji straty. ρτ(u)=u(τ−1{u&lt;0})ρτ(u)=u(τ−1{u&lt;0})\rho_\tau(u) = u(\tau-1_{\{u<0\}}) Wiem, że minimalne oczekiwanie na jest równe kwantile , ale jaki jest intuicyjny powód, aby zacząć od tej funkcji? Nie widzę związku między minimalizowaniem tej funkcji a kwantylem. Czy ktoś może mi …

2
Jak zaprojektować i wdrożyć asymetryczną funkcję straty dla regresji?
Problem W regresji zwykle obliczany jest średni błąd kwadratu (MSE) dla próbki: aby zmierzyć jakość predyktora.MSE=1n∑i=1n(g(xi)−gˆ(xi))2MSE=1n∑i=1n(g(xi)−g^(xi))2 \text{MSE} = \frac{1}{n} \sum_{i=1}^n\left(g(x_i) - \widehat{g}(x_i)\right)^2 Obecnie pracuję nad problemem regresji, którego celem jest przewidzenie ceny, jaką klienci są skłonni zapłacić za produkt, biorąc pod uwagę szereg funkcji numerycznych. Jeśli przewidywana cena jest zbyt …


Korzystając z naszej strony potwierdzasz, że przeczytałeś(-aś) i rozumiesz nasze zasady używania plików cookie i zasady ochrony prywatności.
Licensed under cc by-sa 3.0 with attribution required.