Pytania otagowane jako beta-regression

Regresja beta jest przydatna, gdy zmienna zależna jest ograniczona lub ma efekt sufitu lub podłogi. Może być również używany do modelowania zarówno średniej, jak i wariancji.


3
Dlaczego regresji Beta / Dirichleta nie uważa się za uogólnione modele liniowe?
Założeniem jest ten cytat z winiety z pakietu R betareg1 . Co więcej, model ma pewne właściwości (takie jak predyktor liniowy, funkcja łącza, parametr dyspersji) z uogólnionymi modelami liniowymi (GLM; McCullagh i Nelder 1989), ale nie jest to szczególny przypadek tego szkieletu (nawet dla ustalonej dyspersji ) Ta odpowiedź nawiązuje …

4
Radzenie sobie z wartościami 0,1 w regresji beta
Mam pewne dane w [0,1], które chciałbym przeanalizować za pomocą regresji beta. Oczywiście należy coś zrobić, aby uwzględnić wartości 0,1. Nie lubię modyfikować danych, aby pasowały do ​​modelu. również nie uważam, aby inflacja zero i 1 była dobrym pomysłem, ponieważ uważam, że w tym przypadku należy uznać wartości zerowe za …


2
Dlaczego dokładnie regresja beta nie radzi sobie z zerami i zerami w zmiennej odpowiedzi?
Regresja beta (tj. GLM z rozkładem beta i zwykle funkcją logit link) jest często zalecana do radzenia sobie ze zmienną zależną od odpowiedzi przyjmującą wartości od 0 do 1, takie jak ułamki, stosunki lub prawdopodobieństwa: Regresja dla wyniku (stosunek lub ułamek) od 0 do 1 . Zawsze jednak twierdzi się, …

2
Po co używać linku logit w regresji beta?
Ostatnio byłem zainteresowany wdrożeniem modelu regresji beta, dla wyniku, który jest proporcjonalny. Zauważ, że wynik ten nie mieści się w kontekście dwumianowym, ponieważ w tym kontekście nie ma sensownego pojęcia dyskretnego „sukcesu”. W rzeczywistości wynik jest faktycznie czasem trwania; licznik jest liczbą sekund, podczas których określony warunek jest aktywny przez …

3
Jak zaimplementować model mieszany za pomocą funkcji betareg w R?
Mam zestaw danych składający się z proporcji, które mierzą „poziom aktywności” poszczególnych kijanek, dzięki czemu wartości są powiązane od 0 do 1. Dane te zostały zebrane przez zliczenie liczby ruchów danej osoby w określonym przedziale czasu (1 dla ruchu, 0 za brak ruchu), a następnie uśrednia się, aby utworzyć jedną …


1
Radzenie sobie z regresją niezwykle ograniczonej zmiennej odpowiedzi
Próbuję modelować zmienną odpowiedzi, która teoretycznie jest ograniczona między -225 a +225. Zmienna to łączny wynik uzyskany przez badanych podczas gry. Chociaż teoretycznie możliwe jest zdobycie przez uczestników +225 punktów. Pomimo tego, ponieważ wynik zależał nie tylko od działań podmiotów, ale także działań innych działań, maksymalna liczba zdobytych punktów wyniosła …



1
Interwał prognoz dla przyszłej proporcji sukcesów w ustawieniach dwumianowych
Załóżmy, że dopasowuję regresję dwumianową i uzyskuję oszacowania punktowe i macierz wariancji-kowariancji współczynników regresji. To pozwoli mi uzyskać CI dla oczekiwanego odsetka sukcesów w przyszłym eksperymencie,ppp, ale potrzebuję CI dla obserwowanej proporcji. Opublikowano kilka powiązanych odpowiedzi, w tym symulację (załóżmy, że nie chcę tego robić) oraz link do Krishnamoorthya i …

2
Parametryczne, półparametryczne i nieparametryczne ładowanie początkowe dla modeli mieszanych
Z tego artykułu pochodzą następujące przeszczepy . Jestem nowicjuszem w bootstrapie i próbuję zaimplementować parametryczne, semiparametryczne i nieparametryczne bootstrapowanie dla liniowego modelu mieszanego z R bootpakietem. Kod R. Oto mój Rkod: library(SASmixed) library(lme4) library(boot) fm1Cult <- lmer(drywt ~ Inoc + Cult + (1|Block) + (1|Cult), data=Cultivation) fixef(fm1Cult) boot.fn <- function(data, …
9 r  mixed-model  bootstrap  central-limit-theorem  stable-distribution  time-series  hypothesis-testing  markov-process  r  correlation  categorical-data  association-measure  meta-analysis  r  anova  confidence-interval  lm  r  bayesian  multilevel-analysis  logit  regression  logistic  least-squares  eda  regression  notation  distributions  random-variable  expected-value  distributions  markov-process  hidden-markov-model  r  variance  group-differences  microarray  r  descriptive-statistics  machine-learning  references  r  regression  r  categorical-data  random-forest  data-transformation  data-visualization  interactive-visualization  binomial  beta-distribution  time-series  forecasting  logistic  arima  beta-regression  r  time-series  seasonality  large-data  unevenly-spaced-time-series  correlation  statistical-significance  normalization  population  group-differences  demography 
Korzystając z naszej strony potwierdzasz, że przeczytałeś(-aś) i rozumiesz nasze zasady używania plików cookie i zasady ochrony prywatności.
Licensed under cc by-sa 3.0 with attribution required.