Pytania otagowane jako auc

AUC oznacza obszar pod krzywą i zwykle odnosi się do obszaru pod krzywą charakterystyki operatora odbiornika (ROC).


5
Jak ręcznie obliczyć obszar pod krzywą (AUC) lub statystykę c
Interesuje mnie ręczne obliczanie pola pod krzywą (AUC) lub statystyki c dla binarnego modelu regresji logistycznej. Na przykład w zbiorze danych sprawdzania poprawności mam prawdziwą wartość zmiennej zależnej retencji (1 = zachowane; 0 = nie zachowane), a także przewidywany status retencji dla każdej obserwacji wygenerowanej przez moją analizę regresji przy …



2
Obszar pod krzywą Precyzja-przywołanie (AUC krzywej PR) i Średnia precyzja (AP)
Czy średnia precyzja (AP) to obszar pod krzywą Precyzja-przywołanie (AUC krzywej PR)? EDYTOWAĆ: oto komentarz na temat różnicy w AUC PR i AP. AUC jest uzyskiwane przez trapezoidalną interpolację precyzji. Alternatywnym i zwykle prawie równoważnym miernikiem jest średnia precyzja (AP), zwracana jako info.ap. Jest to średnia precyzji uzyskanej za każdym …

3
Krzywa ROC dla dyskretnych klasyfikatorów, takich jak SVM: Dlaczego wciąż nazywamy ją „krzywą”? Czy to nie jest tylko „punkt”?
W dyskusji: jak wygenerować krzywą roc do klasyfikacji binarnej , myślę, że zamieszanie polegało na tym, że „klasyfikator binarny” (który jest dowolnym klasyfikatorem, który oddziela 2 klasy) był dla Yang tak zwany „dyskretny klasyfikator” (który produkuje wyjścia dyskretne 0/1 jak SVM), a nie ciągłe dane wyjściowe, takie jak klasyfikatory ANN …

4
Jak nazywa się ten wykres pokazujący fałszywe i prawdziwe dodatnie wskaźniki i jak jest generowany?
Poniższy obraz pokazuje ciągłą krzywą współczynników fałszywie dodatnich w stosunku do rzeczywistych wartości dodatnich: Nie od razu jednak rozumiem, jak obliczane są te stawki. Jeśli metoda jest zastosowana do zestawu danych, ma ona określoną szybkość FP i określoną szybkość FN. Czy to nie znaczy, że każda metoda powinna mieć jeden …

1
Czy właśnie wymyśliłem bayesowską metodę analizy krzywych ROC?
Preambuła To jest długi post. Jeśli ponownie to czytasz, pamiętaj, że poprawiłem część pytania, chociaż materiał tła pozostaje taki sam. Dodatkowo uważam, że opracowałem rozwiązanie problemu. To rozwiązanie pojawia się na dole wpisu. Dzięki CliffAB za wskazanie, że moje oryginalne rozwiązanie (edytowane z tego postu; zobacz historię edycji tego rozwiązania) …

3
Dlaczego AUC = 1 nawet klasyfikator błędnie zaklasyfikował połowę próbek?
Używam klasyfikatora, który zwraca prawdopodobieństwa. Aby obliczyć AUC, używam pakietu pROC R. Prawdopodobieństwa wyjściowe z klasyfikatora są następujące: probs=c(0.9865780, 0.9996340, 0.9516880, 0.9337157, 0.9778576, 0.8140116, 0.8971550, 0.8967585, 0.6322902, 0.7497237) probspokazuje prawdopodobieństwo zaliczenia do klasy „1”. Jak pokazano, klasyfikator sklasyfikował wszystkie próbki w klasie „1”. Prawdziwy wektor etykiety to: truel=c(1, 1, 1, …

3
Obszar pod krzywą ROC lub obszar pod krzywą PR dla niezrównoważonych danych?
Mam wątpliwości co do tego, który miernik wydajności zastosować, obszar pod krzywą ROC (TPR jako funkcja FPR) lub obszar pod krzywą precyzja-przywołanie (precyzja jako funkcja przywołania). Moje dane są niezrównoważone, tzn. Liczba negatywnych wystąpień jest znacznie większa niż pozytywnych. Korzystam z prognozy wyjściowej weka, próbka to: inst#,actual,predicted,prediction 1,2:0,2:0,0.873 2,2:0,2:0,0.972 3,2:0,2:0,0.97 …

2
Dokładność vs. pole pod krzywą ROC
Skonstruowałem krzywą ROC dla systemu diagnostycznego. Pole pod krzywą zostało następnie oszacowane nieparametrycznie na AUC = 0,89. Kiedy próbowałem obliczyć dokładność przy optymalnym ustawieniu progu (punkt najbliższy punktowi (0, 1)), dostałem dokładność układu diagnostycznego na 0,8, czyli mniej niż AUC! Kiedy sprawdziłem dokładność przy innym ustawieniu progu, który jest daleki …


4
Dokładność maszyny zwiększającej gradient zmniejsza się wraz ze wzrostem liczby iteracji
Eksperymentuję z algorytmem maszyny do zwiększania gradientu za pośrednictwem caretpakietu w R. Korzystając z małego zestawu danych o przyjęciach na studia, uruchomiłem następujący kod: library(caret) ### Load admissions dataset. ### mydata <- read.csv("http://www.ats.ucla.edu/stat/data/binary.csv") ### Create yes/no levels for admission. ### mydata$admit_factor[mydata$admit==0] <- "no" mydata$admit_factor[mydata$admit==1] <- "yes" ### Gradient boosting machine …
15 machine-learning  caret  boosting  gbm  hypothesis-testing  t-test  panel-data  psychometrics  intraclass-correlation  generalized-linear-model  categorical-data  binomial  model  intercept  causality  cross-correlation  distributions  ranks  p-value  z-test  sign-test  time-series  references  terminology  cross-correlation  definition  probability  distributions  beta-distribution  inverse-gamma  missing-data  paired-comparisons  paired-data  clustered-standard-errors  cluster-sample  time-series  arima  logistic  binary-data  odds-ratio  medicine  hypothesis-testing  wilcoxon-mann-whitney  unsupervised-learning  hierarchical-clustering  neural-networks  train  clustering  k-means  regression  ordinal-data  change-scores  machine-learning  experiment-design  roc  precision-recall  auc  stata  multilevel-analysis  regression  fitting  nonlinear  jmp  r  data-visualization  gam  gamm4  r  lme4-nlme  many-categories  regression  causality  instrumental-variables  endogeneity  controlling-for-a-variable 

2
Obszar pod „pdf” w szacowaniu gęstości jądra w R
Próbuję użyć funkcji „ gęstości ” w R do oszacowania gęstości jądra. Mam pewne trudności z interpretacją wyników i porównywaniem różnych zestawów danych, ponieważ wydaje się, że obszar pod krzywą niekoniecznie jest 1. Dla każdej funkcji gęstości prawdopodobieństwa (pdf) musimy mieć obszar ∫ ∞ - ∞ ϕ ( x ) …

1
logloss vs gini / auc
Przeszkoliłem dwa modele (klasyfikatory binarne przy użyciu h2o AutoML) i chcę wybrać jeden do użycia. Mam następujące wyniki: model_id auc logloss logloss_train logloss_valid gini_train gini_valid DL_grid_1 0.542694 0.287469 0.092717 0.211956 0.872932 0.312975 DL_grid_2 0.543685 0.251431 0.082616 0.186196 0.900955 0.312662 auci loglosskolumny są metryki cross-validation (tylko krzyż walidacja wykorzystuje dane szkolenie). …

Korzystając z naszej strony potwierdzasz, że przeczytałeś(-aś) i rozumiesz nasze zasady używania plików cookie i zasady ochrony prywatności.
Licensed under cc by-sa 3.0 with attribution required.