Pytania otagowane jako text-mining

Odnosi się do podzbioru eksploracji danych związanych z wydobywaniem informacji z danych w postaci tekstu poprzez rozpoznawanie wzorców. Celem eksploracji tekstu jest często automatyczne zaklasyfikowanie danego dokumentu do jednej z wielu kategorii i dynamiczna poprawa tej wydajności, co czyni go przykładem uczenia maszynowego. Jednym z przykładów tego typu eksploracji tekstu są filtry spamu używane w wiadomościach e-mail.


1
Dlaczego xgboost jest o wiele szybszy niż sklearn GradientBoostingClassifier?
Próbuję wytrenować model zwiększania gradientu na ponad 50 tysiącach przykładów ze 100 funkcjami numerycznymi. XGBClassifierobsługuje 500 drzew w ciągu 43 sekund na mojej maszynie, a GradientBoostingClassifierobsługuje tylko 10 drzew (!) w 1 minutę i 2 sekundy :( Nie zawracałem sobie głowy próbą wyhodowania 500 drzew, ponieważ zajmie to godziny. Używam …
29 scikit-learn  xgboost  gbm  data-mining  classification  data-cleaning  machine-learning  reinforcement-learning  data-mining  bigdata  dataset  nlp  language-model  stanford-nlp  machine-learning  neural-network  deep-learning  randomized-algorithms  machine-learning  beginner  career  xgboost  loss-function  neural-network  software-recommendation  naive-bayes-classifier  classification  scikit-learn  feature-selection  r  random-forest  cross-validation  data-mining  python  scikit-learn  random-forest  churn  python  clustering  k-means  machine-learning  nlp  sentiment-analysis  machine-learning  programming  python  scikit-learn  nltk  gensim  visualization  data  csv  neural-network  deep-learning  descriptive-statistics  machine-learning  supervised-learning  text-mining  orange  data  parameter-estimation  python  pandas  scraping  r  clustering  k-means  unsupervised-learning 

4
Jakich algorytmów należy użyć do przeprowadzenia klasyfikacji zadania na podstawie danych wznawiania?
Zauważ, że robię wszystko w R. Problem wygląda następująco: Zasadniczo mam listę CV (CV). Niektórzy kandydaci będą mieli wcześniej doświadczenie zawodowe, a niektórzy nie. Celem jest tutaj: na podstawie tekstu w życiorysach chcę podzielić je na różne sektory pracy. Zwłaszcza w tych przypadkach, w których kandydaci nie mają doświadczenia / …


3
Wyodrębnianie słów kluczowych / fraz z tekstu przy użyciu bibliotek Deep Learning
Być może jest to zbyt ogólne, ale szukam referencji na temat korzystania z głębokiego uczenia się w zadaniu podsumowywania tekstu. Wdrożyłem już podsumowanie tekstu przy użyciu standardowych podejść do częstotliwości słów i rankingu zdań, ale chciałbym zbadać możliwość zastosowania technik głębokiego uczenia się do tego zadania. Przeszedłem również kilka implementacji …



3
Jak stworzyć listę powiązanych słów na podstawie początkowych słów kluczowych?
Niedawno widziałem fajną funkcję, która była kiedyś dostępna w Arkuszach Google: zaczynasz od napisania kilku powiązanych słów kluczowych w kolejnych komórkach, na przykład: „niebieski”, „zielony”, „żółty”, i automatycznie generuje podobne słowa kluczowe (w tym przypadku , inne kolory). Zobacz więcej przykładów w tym filmie na YouTube . Chciałbym to odtworzyć …

4
Jak dodawać adnotacje do dokumentów tekstowych za pomocą metadanych?
Mając wiele dokumentów tekstowych (w języku naturalnym, nieuporządkowanym), jakie są możliwe sposoby przypisywania im niektórych semantycznych metadanych? Rozważmy na przykład krótki dokument: I saw the company's manager last day. Aby móc z niej wyodrębnić informacje, muszą być opatrzone adnotacjami dodatkowymi danymi, aby były mniej niejednoznaczne. Proces wyszukiwania takich metadanych nie …

2
Doc2Vec - Jak oznaczyć akapity (gensim)
Zastanawiam się, jak oznaczyć (tagować) zdania / akapity / dokumenty za pomocą doc2vec w gensim - z praktycznego punktu widzenia. Czy musisz mieć każde zdanie / akapit / dokument z własną unikalną etykietą (np. „Wysłane_123”)? Wydaje się to przydatne, jeśli chcesz powiedzieć „jakie słowa lub zdania są najbardziej podobne do …

1
Algorytmy klastrowania tekstu
Mam problem z grupowaniem ogromnej liczby zdań w grupy według ich znaczenia. Jest to podobne do problemu, gdy masz wiele zdań i chcesz je pogrupować według ich znaczenia. Jakie algorytmy są zalecane? Nie wiem z góry liczby klastrów (a ponieważ nadchodzi więcej danych, klastry również mogą się zmieniać), jakie funkcje …

5
powiększ mapę cieplną dna morskiego
Tworzę plik corr()df z oryginalnego pliku df. corr()Df wyszedł 70 x 70 i to jest niemożliwe, aby wyobrazić sobie mapę cieplną ... sns.heatmap(df). Jeśli spróbuję wyświetlić corr = df.corr(), tabela nie pasuje do ekranu i widzę wszystkie korelacje. Czy jest to sposób na wydrukowanie całości dfbez względu na jej rozmiar …
17 visualization  pandas  plotting  machine-learning  neural-network  svm  decision-trees  svm  efficiency  python  linear-regression  machine-learning  nlp  topic-model  lda  named-entity-recognition  naive-bayes-classifier  association-rules  fuzzy-logic  kaggle  deep-learning  tensorflow  inception  classification  feature-selection  feature-engineering  machine-learning  scikit-learn  tensorflow  keras  encoding  nlp  text-mining  nlp  rnn  python  neural-network  feature-extraction  machine-learning  predictive-modeling  python  r  linear-regression  clustering  r  ggplot2  neural-network  neural-network  training  python  neural-network  deep-learning  rnn  predictive-modeling  databases  sql  programming  distribution  dataset  cross-validation  neural-network  deep-learning  rnn  machine-learning  machine-learning  python  deep-learning  data-mining  tensorflow  visualization  tools  sql  embeddings  orange  feature-extraction  unsupervised-learning  gan  machine-learning  python  data-mining  pandas  machine-learning  data-mining  bigdata  apache-spark  apache-hadoop  deep-learning  python  convnet  keras  aggregation  clustering  k-means  r  random-forest  decision-trees  reference-request  visualization  data  pandas  plotting  neural-network  keras  rnn  theano  deep-learning  tensorflow  inception  predictive-modeling  deep-learning  regression  sentiment-analysis  nlp  encoding  deep-learning  python  scikit-learn  lda  convnet  keras  predictive-modeling  regression  overfitting  regression  svm  prediction  machine-learning  similarity  word2vec  information-retrieval  word-embeddings  neural-network  deep-learning  rnn 

2
Wyodrębnij najbardziej pouczające części tekstu z dokumentów
Czy są jakieś artykuły lub dyskusje na temat wyodrębnienia części tekstu, która zawiera najwięcej informacji o bieżącym dokumencie. Na przykład mam duży zbiór dokumentów z tej samej domeny. Istnieją fragmenty tekstu zawierające kluczowe informacje, o których mówi pojedynczy dokument. Chcę wyodrębnić niektóre z tych części i wykorzystać je jako podsumowanie …
16 nlp  text-mining 

4
Jak wykonać dopasowanie rozmyte adresów pocztowych?
Chciałbym wiedzieć, jak dopasować adresy pocztowe, gdy ich format różni się lub gdy jeden z nich jest źle zapisany. Do tej pory znalazłem różne rozwiązania, ale myślę, że są one dość stare i niezbyt wydajne. Jestem pewien, że istnieją lepsze metody, więc jeśli masz dla mnie referencje, jestem pewien, że …


Korzystając z naszej strony potwierdzasz, że przeczytałeś(-aś) i rozumiesz nasze zasady używania plików cookie i zasady ochrony prywatności.
Licensed under cc by-sa 3.0 with attribution required.