Pytania otagowane jako image-classification

W przypadku pytań dotyczących klasyfikacji obrazu: problem decyzyjny, w którym algorytm musi zdecydować, do której klasy („kot”, „krzesło”, „drzewo”) należy obraz wejściowy.

2
Jak przygotować / powiększyć obrazy dla sieci neuronowej?
Chciałbym użyć sieci neuronowej do klasyfikacji obrazów. Zacznę od wstępnie przeszkolonego CaffeNet i wyszkolę go do mojej aplikacji. Jak przygotować obrazy wejściowe? W tym przypadku wszystkie obrazy są tego samego obiektu, ale z różnymi odmianami (pomyśl: kontrola jakości). Są w nieco różnych skalach / rozdzielczościach / odległościach / warunkach oświetleniowych …





1
Powód kwadratowych obrazów w głębokim uczeniu się
Większość zaawansowanych modeli głębokiego uczenia, takich jak VGG, ResNet itp., Wymaga kwadratowych obrazów jako danych wejściowych, zwykle o rozmiarze piksela x .224 x 224224x224224x224 Czy istnieje powód, dla którego dane wejściowe muszą być w jednakowym kształcie, czy też mogę zbudować model konwekcyjny z powiedzmy (jeśli chcę na przykład rozpoznać twarz …


1
Ile komórek LSTM powinienem użyć?
Czy istnieją jakieś praktyczne zasady (lub rzeczywiste zasady) dotyczące minimalnej, maksymalnej i „rozsądnej” liczby komórek LSTM, których powinienem użyć? W szczególności odnoszę się do BasicLSTMCell z TensorFlow i num_unitswłasności. Załóżmy, że mam problem z klasyfikacją zdefiniowany przez: t - number of time steps n - length of input vector in …
12 rnn  machine-learning  r  predictive-modeling  random-forest  python  language-model  sentiment-analysis  encoding  machine-learning  deep-learning  neural-network  dataset  caffe  classification  xgboost  multiclass-classification  unbalanced-classes  time-series  descriptive-statistics  python  r  clustering  machine-learning  python  deep-learning  tensorflow  machine-learning  python  predictive-modeling  probability  scikit-learn  svm  machine-learning  python  classification  gradient-descent  regression  research  python  neural-network  deep-learning  convnet  keras  python  tensorflow  machine-learning  deep-learning  tensorflow  python  r  bigdata  visualization  rstudio  pandas  pyspark  dataset  time-series  multilabel-classification  machine-learning  neural-network  ensemble-modeling  kaggle  machine-learning  linear-regression  cnn  convnet  machine-learning  tensorflow  association-rules  machine-learning  predictive-modeling  training  model-selection  neural-network  keras  deep-learning  deep-learning  convnet  image-classification  predictive-modeling  prediction  machine-learning  python  classification  predictive-modeling  scikit-learn  machine-learning  python  random-forest  sampling  training  recommender-system  books  python  neural-network  nlp  deep-learning  tensorflow  python  matlab  information-retrieval  search  search-engine  deep-learning  convnet  keras  machine-learning  python  cross-validation  sampling  machine-learning 

3
Czy są jakieś dobre gotowe modele językowe dla Pythona?
Prototypuję aplikację i potrzebuję modelu językowego, aby obliczyć zakłopotanie w przypadku niektórych wygenerowanych zdań. Czy istnieje jakiś wyuczony model języka w Pythonie, którego można łatwo używać? Coś prostego jak model = LanguageModel('en') p1 = model.perplexity('This is a well constructed sentence') p2 = model.perplexity('Bunny lamp robert junior pancake') assert p1 < …
11 python  nlp  language-model  r  statistics  linear-regression  machine-learning  classification  random-forest  xgboost  python  sampling  data-mining  orange  predictive-modeling  recommender-system  statistics  dimensionality-reduction  pca  machine-learning  python  deep-learning  keras  reinforcement-learning  neural-network  image-classification  r  dplyr  deep-learning  keras  tensorflow  lstm  dropout  machine-learning  sampling  categorical-data  data-imputation  machine-learning  deep-learning  machine-learning-model  dropout  deep-network  pandas  data-cleaning  data-science-model  aggregation  python  neural-network  reinforcement-learning  policy-gradients  r  dataframe  dataset  statistics  prediction  forecasting  r  k-means  python  scikit-learn  labels  python  orange  cloud-computing  machine-learning  neural-network  deep-learning  rnn  recurrent-neural-net  logistic-regression  missing-data  deep-learning  autoencoder  apache-hadoop  time-series  data  preprocessing  classification  predictive-modeling  time-series  machine-learning  python  feature-selection  autoencoder  deep-learning  keras  tensorflow  lstm  word-embeddings  predictive-modeling  prediction  machine-learning-model  machine-learning  classification  binary  theory  machine-learning  neural-network  time-series  lstm  rnn  neural-network  deep-learning  keras  tensorflow  convnet  computer-vision 

3
Po co używać splotowych NN do zadań kontroli wizualnej w porównaniu z klasycznym dopasowaniem szablonu CV?
Miałem interesującą dyskusję na podstawie projektu, nad którym pracowaliśmy: po co używać systemu kontroli wizualnej CNN zamiast algorytmu dopasowywania szablonów? Tło: Pokazałem demo prostego systemu wizyjnego CNN (kamera internetowa + laptop), który wykrył, czy określony typ obiektu został „uszkodzony” / uszkodzony, czy nie - w tym przypadku płytka drukowana PCB. …
Korzystając z naszej strony potwierdzasz, że przeczytałeś(-aś) i rozumiesz nasze zasady używania plików cookie i zasady ochrony prywatności.
Licensed under cc by-sa 3.0 with attribution required.