Pytania otagowane jako encoding

6
Funkcje kodowania, takie jak miesiąc i godzina, jako kategoryczne lub numeryczne?
Czy lepiej jest kodować funkcje takie jak miesiąc i godzina jako czynnik lub wartość liczbowa w modelu uczenia maszynowego? Z jednej strony uważam, że kodowanie numeryczne może być rozsądne, ponieważ czas jest procesem postępowym (po piątym miesiącu następuje szósty miesiąc), ale z drugiej strony uważam, że kodowanie kategoryczne może być …



1
Jak radzić sobie z etykietami ciągów w klasyfikacji wielu klas za pomocą keras?
Jestem początkującym w uczeniu maszynowym i keras, a teraz pracuję nad problemem klasyfikacji klas obrazów za pomocą keras. Wejście jest oznaczone obrazem. Po wstępnym przetworzeniu dane szkoleniowe są reprezentowane na liście Python jako: [["dog", "path/to/dog/imageX.jpg"],["cat", "path/to/cat/imageX.jpg"], ["bird", "path/to/cat/imageX.jpg"]] „pies”, „kot” i „ptak” to oznaczenia klasy. Wydaje mi się, że w …

5
powiększ mapę cieplną dna morskiego
Tworzę plik corr()df z oryginalnego pliku df. corr()Df wyszedł 70 x 70 i to jest niemożliwe, aby wyobrazić sobie mapę cieplną ... sns.heatmap(df). Jeśli spróbuję wyświetlić corr = df.corr(), tabela nie pasuje do ekranu i widzę wszystkie korelacje. Czy jest to sposób na wydrukowanie całości dfbez względu na jej rozmiar …
17 visualization  pandas  plotting  machine-learning  neural-network  svm  decision-trees  svm  efficiency  python  linear-regression  machine-learning  nlp  topic-model  lda  named-entity-recognition  naive-bayes-classifier  association-rules  fuzzy-logic  kaggle  deep-learning  tensorflow  inception  classification  feature-selection  feature-engineering  machine-learning  scikit-learn  tensorflow  keras  encoding  nlp  text-mining  nlp  rnn  python  neural-network  feature-extraction  machine-learning  predictive-modeling  python  r  linear-regression  clustering  r  ggplot2  neural-network  neural-network  training  python  neural-network  deep-learning  rnn  predictive-modeling  databases  sql  programming  distribution  dataset  cross-validation  neural-network  deep-learning  rnn  machine-learning  machine-learning  python  deep-learning  data-mining  tensorflow  visualization  tools  sql  embeddings  orange  feature-extraction  unsupervised-learning  gan  machine-learning  python  data-mining  pandas  machine-learning  data-mining  bigdata  apache-spark  apache-hadoop  deep-learning  python  convnet  keras  aggregation  clustering  k-means  r  random-forest  decision-trees  reference-request  visualization  data  pandas  plotting  neural-network  keras  rnn  theano  deep-learning  tensorflow  inception  predictive-modeling  deep-learning  regression  sentiment-analysis  nlp  encoding  deep-learning  python  scikit-learn  lda  convnet  keras  predictive-modeling  regression  overfitting  regression  svm  prediction  machine-learning  similarity  word2vec  information-retrieval  word-embeddings  neural-network  deep-learning  rnn 

4
Jedna alternatywa kodowania na gorąco dla dużych wartości jakościowych?
Cześć, mam ramkę danych z dużymi wartościami kategorialnymi ponad 1600 kategorii. Czy mogę znaleźć alternatywy, aby nie mieć ponad 1600 kolumn. Znalazłem to poniżej ciekawy link http://amunategui.github.io/feature-hashing/#sourcecode Ale konwertują na klasę / obiekt, którego nie chcę. Czy chcę, aby końcowy wynik był ramką danych, aby móc testować za pomocą różnych …

1
Jaka jest różnica między globalnymi a uniwersalnymi metodami kompresji?
Rozumiem, że metody kompresji można podzielić na dwa główne zestawy: światowy lokalny Pierwszy zestaw działa niezależnie od przetwarzanych danych, tzn. Nie opierają się na żadnej charakterystyce danych, a zatem nie muszą wykonywać żadnego przetwarzania wstępnego w żadnej części zestawu danych (przed samą kompresją). Z drugiej strony lokalne metody analizują dane, …

1
Ile komórek LSTM powinienem użyć?
Czy istnieją jakieś praktyczne zasady (lub rzeczywiste zasady) dotyczące minimalnej, maksymalnej i „rozsądnej” liczby komórek LSTM, których powinienem użyć? W szczególności odnoszę się do BasicLSTMCell z TensorFlow i num_unitswłasności. Załóżmy, że mam problem z klasyfikacją zdefiniowany przez: t - number of time steps n - length of input vector in …
12 rnn  machine-learning  r  predictive-modeling  random-forest  python  language-model  sentiment-analysis  encoding  machine-learning  deep-learning  neural-network  dataset  caffe  classification  xgboost  multiclass-classification  unbalanced-classes  time-series  descriptive-statistics  python  r  clustering  machine-learning  python  deep-learning  tensorflow  machine-learning  python  predictive-modeling  probability  scikit-learn  svm  machine-learning  python  classification  gradient-descent  regression  research  python  neural-network  deep-learning  convnet  keras  python  tensorflow  machine-learning  deep-learning  tensorflow  python  r  bigdata  visualization  rstudio  pandas  pyspark  dataset  time-series  multilabel-classification  machine-learning  neural-network  ensemble-modeling  kaggle  machine-learning  linear-regression  cnn  convnet  machine-learning  tensorflow  association-rules  machine-learning  predictive-modeling  training  model-selection  neural-network  keras  deep-learning  deep-learning  convnet  image-classification  predictive-modeling  prediction  machine-learning  python  classification  predictive-modeling  scikit-learn  machine-learning  python  random-forest  sampling  training  recommender-system  books  python  neural-network  nlp  deep-learning  tensorflow  python  matlab  information-retrieval  search  search-engine  deep-learning  convnet  keras  machine-learning  python  cross-validation  sampling  machine-learning 
Korzystając z naszej strony potwierdzasz, że przeczytałeś(-aś) i rozumiesz nasze zasady używania plików cookie i zasady ochrony prywatności.
Licensed under cc by-sa 3.0 with attribution required.