Pytania otagowane jako word2vec

word2vec to dwuwarstwowa sieć neuronowa przetwarzająca tekst. Pobiera słowa jako dane wejściowe i odpowiednio wyprowadza wektor. Wykorzystuje połączenie Continuous Bag of Word i implementacji modelu skipgram.

4
Jak mogę uzyskać miarę semantycznego podobieństwa słów?
Jak najlepiej ustalić semantyczne podobieństwo słów? Word2Vec jest w porządku, ale nie idealny: # Using the 840B word Common Crawl GloVe vectors with gensim: # 'hot' is closer to 'cold' than 'warm' In [7]: model.similarity('hot', 'cold') Out[7]: 0.59720456121072973 In [8]: model.similarity('hot', 'warm') Out[8]: 0.56784095376659627 # Cold is much closer to …

5
Najlepszy praktyczny algorytm podobieństwa zdań
Mam dwa zdania, S1 i S2, oba o liczbie słów (zwykle) poniżej 15. Jakie są najbardziej praktyczne i skuteczne algorytmy (uczenie maszynowe), które są prawdopodobnie łatwe do wdrożenia (sieć neuronowa jest w porządku, chyba że architektura jest tak skomplikowana jak Google Inception itp.). Szukam algorytmu, który będzie działał dobrze bez …

2
Doc2Vec - Jak oznaczyć akapity (gensim)
Zastanawiam się, jak oznaczyć (tagować) zdania / akapity / dokumenty za pomocą doc2vec w gensim - z praktycznego punktu widzenia. Czy musisz mieć każde zdanie / akapit / dokument z własną unikalną etykietą (np. „Wysłane_123”)? Wydaje się to przydatne, jeśli chcesz powiedzieć „jakie słowa lub zdania są najbardziej podobne do …

5
powiększ mapę cieplną dna morskiego
Tworzę plik corr()df z oryginalnego pliku df. corr()Df wyszedł 70 x 70 i to jest niemożliwe, aby wyobrazić sobie mapę cieplną ... sns.heatmap(df). Jeśli spróbuję wyświetlić corr = df.corr(), tabela nie pasuje do ekranu i widzę wszystkie korelacje. Czy jest to sposób na wydrukowanie całości dfbez względu na jej rozmiar …
17 visualization  pandas  plotting  machine-learning  neural-network  svm  decision-trees  svm  efficiency  python  linear-regression  machine-learning  nlp  topic-model  lda  named-entity-recognition  naive-bayes-classifier  association-rules  fuzzy-logic  kaggle  deep-learning  tensorflow  inception  classification  feature-selection  feature-engineering  machine-learning  scikit-learn  tensorflow  keras  encoding  nlp  text-mining  nlp  rnn  python  neural-network  feature-extraction  machine-learning  predictive-modeling  python  r  linear-regression  clustering  r  ggplot2  neural-network  neural-network  training  python  neural-network  deep-learning  rnn  predictive-modeling  databases  sql  programming  distribution  dataset  cross-validation  neural-network  deep-learning  rnn  machine-learning  machine-learning  python  deep-learning  data-mining  tensorflow  visualization  tools  sql  embeddings  orange  feature-extraction  unsupervised-learning  gan  machine-learning  python  data-mining  pandas  machine-learning  data-mining  bigdata  apache-spark  apache-hadoop  deep-learning  python  convnet  keras  aggregation  clustering  k-means  r  random-forest  decision-trees  reference-request  visualization  data  pandas  plotting  neural-network  keras  rnn  theano  deep-learning  tensorflow  inception  predictive-modeling  deep-learning  regression  sentiment-analysis  nlp  encoding  deep-learning  python  scikit-learn  lda  convnet  keras  predictive-modeling  regression  overfitting  regression  svm  prediction  machine-learning  similarity  word2vec  information-retrieval  word-embeddings  neural-network  deep-learning  rnn 

4
Jak zainicjować nowy model word2vec przy pomocy wstępnie wyuczonych wag modelu?
Korzystam z biblioteki Gensim w Pythonie do używania i szkolenia modelu word2vector. Ostatnio zastanawiałem się nad zainicjowaniem wag modelu za pomocą wstępnie wyszkolonego modelu word2vec, takiego jak (model wstępnie przeszkolony GoogleNewDataset). Walczyłem z tym od kilku tygodni. Teraz właśnie sprawdziłem, że w gesim jest funkcja, która może mi pomóc zainicjować …

4
Liczba epok w implementacji Gensim Word2Vec
W implementacji Word2Vec znajduje się iterparametrgensim klasa gensim.models.word2vec.Word2Vec (zdania = brak, rozmiar = 100, alfa = 0,025, okno = 5, liczba_minimalna = 5, max_vocab_size = brak, próbka = 0, seed = 1, pracownicy = 1, min_alpha = 0,0001, sg = 1, hs = 1, ujemny = 0, cbow_mean = 0, …



3
Czy Word2Vec i Doc2Vec są reprezentacją dystrybucyjną, czy reprezentacją rozproszoną?
Czytałem, że reprezentacja dystrybucyjna opiera się na hipotezie dystrybucyjnej, że słowa występujące w podobnym kontekście mają zwykle podobne znaczenie. Word2Vec i Doc2Vec są modelowane zgodnie z tą hipotezą. Ale w oryginalnym artykule nawet one są zatytułowane jako Distributed representation of words and phrasesi Distributed representation of sentences and documents. Tak …

2
Jaka jest macierz funkcji w word2vec?
Jestem początkującym w sieciach neuronowych i obecnie badam model word2vec. Trudno mi jednak zrozumieć, czym dokładnie jest matryca funkcji. Rozumiem, że pierwsza matryca to jeden gorący wektor kodowania dla danego słowa, ale co oznacza druga matryca? Mówiąc dokładniej, co oznacza każda z tych wartości (tj. 17, 24, 1 itd.)?

2
Cechy wektorów słownych w word2vec
Próbuję przeprowadzić analizę sentymentu. Aby przekonwertować słowa na wektory słów, używam modelu word2vec. Załóżmy, że mam wszystkie zdania na liście o nazwie „zdania” i przekazuję te zdania do word2vec w następujący sposób: model = word2vec.Word2Vec(sentences, workers=4 , min_count=40, size=300, window=5, sample=1e-3) Ponieważ jestem nobem wektory słów, mam dwie wątpliwości. 1- …
Korzystając z naszej strony potwierdzasz, że przeczytałeś(-aś) i rozumiesz nasze zasady używania plików cookie i zasady ochrony prywatności.
Licensed under cc by-sa 3.0 with attribution required.