Uwzględnienie dodatkowych ograniczeń (zwykle kara za złożoność) w procesie dopasowania modelu. Służy do zapobiegania przeuczeniu / zwiększenia dokładności predykcyjnej.
Rozważ regresję liniową z pewną regularyzacją: Np. Znajdź który minimalizuje | | A x - b | | 2 + λ | | x | | 1xxx||Ax−b||2+λ||x||1||Ax−b||2+λ||x||1||Ax - b||^2+\lambda||x||_1 Zwykle kolumny A są znormalizowane, aby miały średnią zerową i normę jednostkową, podczas gdy jest wyśrodkowany, aby mieć średnią zerową. Chcę …
Analizuję zestaw danych przy użyciu modelu efektów mieszanych z jednym ustalonym efektem (warunkiem) i dwoma efektami losowymi (uczestnik ze względu na projekt i parę wewnątrz przedmiotu). Model ten został wygenerowany z lme4pakietu: exp.model<-lmer(outcome~condition+(1|participant)+(1|pair),data=exp). Następnie wykonałem test współczynnika wiarygodności tego modelu względem modelu bez ustalonego efektu (warunku) i mam znaczącą różnicę. …
http://www.chioka.in/differences-between-l1-and-l2-as-loss-function-and-regularization/ Jeśli spojrzysz na górę tego postu, pisarz wspomina, że norma L2 ma unikalne rozwiązanie, a norma L1 ma prawdopodobnie wiele rozwiązań. Rozumiem to w kategoriach regularyzacji, ale nie w kategoriach użycia normy L1 lub normy L2 w funkcji straty. Jeśli spojrzysz na wykresy funkcji skalarnej x (x ^ 2 …
Na tej stronie jest już post mówiący o tym samym problemie: Dlaczego działa skurcz? Ale mimo że odpowiedzi są popularne, nie sądzę, aby sedno pytania zostało naprawdę rozwiązane. Oczywiste jest, że wprowadzenie błędu systematycznego w estymacji powoduje zmniejszenie wariancji i może poprawić jakość estymacji. Jednak: 1) Dlaczego szkody wyrządzone przez …
Zdaję sobie sprawę z rodzaju regularyzacji typu LASSO, grzbietu i siatki elastycznej w modelach regresji liniowej. Pytanie: Czy ten (lub podobny) rodzaj oszacowania podlegającego sankcji można zastosować do modelowania ARIMA (z niepustą częścią MA)? Przy budowaniu modeli ARIMA wydaje się, że zwykle bierze się pod uwagę wstępnie wybraną kolejność maksymalnego …
Czytałem najpopularniejsze książki w nauce statystycznej 1- Elementy uczenia statystycznego. 2- Wprowadzenie do uczenia statystycznego . Obaj wspominają, że regresja kalenicy ma dwie równoważne formuły. Czy istnieje zrozumiały matematyczny dowód tego wyniku? Przeszedłem również przez Cross Validated , ale nie mogę znaleźć tam konkretnego dowodu. Ponadto, czy LASSO będzie korzystać …
Powiedzmy, że mam klasyfikator regresji logistycznej. Podczas normalnego uczenia wsadowego stosuję termin regulizujący, aby zapobiec nadmiernemu dopasowaniu i utrzymać moją wagę na niskim poziomie. Normalizowałbym również i skalował moje funkcje. W ustawieniach do nauki online otrzymuję ciągły strumień danych. Z każdym przykładem wykonuję aktualizację spadku gradientu, a następnie ją odrzucam. …
Zgodnie z tym samouczkiem na temat głębokiego uczenia się , odchudzanie (regularyzacja) zwykle nie jest stosowane do terminów stronniczości b dlaczego? Jakie jest za tym znaczenie (intuicja)?
Zdefiniuj oszacowanie lasso gdzie i ^ {th} wiersz x_i \ in \ mathbb {R} ^ p macierzy projektowej X \ in \ mathbb {R} ^ {n \ times p} jest wektorem zmiennych towarzyszących dla wyjaśnienia odpowiedzi stochastycznej y_i (dla i = 1, \ kropki n ).β^λ=argminβ∈Rp12n∥y−Xβ∥22+λ∥β∥1,β^λ=argminβ∈Rp12n‖y−Xβ‖22+λ‖β‖1,\hat\beta^\lambda = \arg\min_{\beta \in \mathbb{R}^p} …
W regresji grzbietu funkcją celu, którą należy zminimalizować, jest:RSS+λ∑β2j.RSS+λ∑βj2.\text{RSS}+\lambda \sum\beta_j^2. Czy można to zoptymalizować za pomocą metody mnożnika Lagrange'a? Czy jest to proste różnicowanie?
Istnieje kilka prac matematycznych opisujących lasso bayesowskie, ale chcę przetestować poprawny kod JAGS, którego mogę użyć. Czy ktoś może opublikować próbkę kodu BŁĘDY / JAGS, który implementuje regulowaną regresję logistyczną? Każdy schemat (L1, L2, Elasticnet) byłby świetny, ale preferowany jest Lasso. Zastanawiam się także, czy istnieją ciekawe alternatywne strategie wdrażania.
normą jest unikalny (przynajmniej częściowo), ponieważ znajduje się na granicy między uwypuklony i wypukłe. normą jest „najbardziej rzadki” norma wypukły (prawda?). p = 1 L 1L1L1L_1p=1p=1p=1L1L1L_1 Rozumiem, że norma euklidesowa ma korzenie w geometrii i ma jasną interpretację, gdy wymiary mają te same jednostki. Ale nie rozumiem, dlaczego jest stosowany …
nazwa operatora {diag}}\newcommand{\diag}{\operatorname{diag}} Mamy problem: minw∈Rd(1n∑i=1n(⟨w,xi⟩−yi)2+2λ||w||1),minw∈Rd(1n∑i=1n(⟨w,xi⟩−yi)2+2λ||w||1),\min_{w\in\mathbb{R}^{d}}\left( \frac{1}{n}\sum_{i=1}^{n} \left( \langle w,x_{i}\rangle-y_{i} \right)^{2} +2\lambda||w||_1\right), przy założeniu, że: ∑i=1nxixTi=diag(σ21,...,σ2d).∑i=1nxixiT=diag(σ12,...,σd2).\sum_{i=1}^nx_ix_i^T=\diag(\sigma_1^2,...,\sigma_d^2). Czy w tym przypadku istnieje rozwiązanie w formie zamkniętej? Mam to: (XTX)−1=diag(σ−21,...,σ−2d),(XTX)−1=diag(σ1−2,...,σd−2),(X^TX)^{-1}=\diag\left(\sigma_1^{-2},...,\sigma_d^{-2}\right), więc myślę, że odpowiedź brzmi : wj=yjmax{0,1−λn|yj|},wj=yjmax{0,1−λn|yj|},w\,^j=y\,^j\max\left\{0,1-\lambda \frac{n}{|y^j|}\right\}, dla yj=∑i=1nyixijσ2iyj=∑i=1nyixijσi2y\,^j=\displaystyle\sum_{i=1}^n\frac{y_ix_i\,^j}{\sigma_i^2} , ale nie jestem pewien.
Modeluję 15000 tweetów do prognozowania nastrojów za pomocą jednowarstwowej LSTM ze 128 ukrytymi jednostkami za pomocą reprezentacji podobnej do word2vec o 80 wymiarach. Dostaję dokładność zniżania (38% losowo = 20%) po 1 epoce. Więcej treningów powoduje, że dokładność walidacji zaczyna spadać, gdy dokładność treningu zaczyna się wspinać - wyraźny znak …
W sekcji 3.2 Rozpoznawania wzorców i uczenia maszynowego Bishopa omawia dekompozycję wariancji odchylenia, stwierdzając, że dla funkcji straty kwadratowej oczekiwana strata może zostać rozłożona na wartość kwadratową błędu (która opisuje, jak daleko średnie prognozy są od prawdziwej model), termin wariancji (który opisuje rozkład prognoz wokół średniej) i termin szumu (który …
Używamy plików cookie i innych technologii śledzenia w celu poprawy komfortu przeglądania naszej witryny, aby wyświetlać spersonalizowane treści i ukierunkowane reklamy, analizować ruch w naszej witrynie, i zrozumieć, skąd pochodzą nasi goście.
Kontynuując, wyrażasz zgodę na korzystanie z plików cookie i innych technologii śledzenia oraz potwierdzasz, że masz co najmniej 16 lat lub zgodę rodzica lub opiekuna.