Pytania otagowane jako least-squares

Odnosi się do ogólnej techniki szacowania, która wybiera wartość parametru, aby zminimalizować kwadratową różnicę między dwiema wielkościami, taką jak wartość obserwowana zmiennej i oczekiwana wartość tej obserwacji uwarunkowana wartością parametru. Gaussowskie modele liniowe pasują do najmniejszych kwadratów, a najmniejsze kwadraty to idea leżąca u podstaw zastosowania błędu średniego kwadratu (MSE) jako metody oceny estymatora.

3
Przydatność twierdzenia Frisch-Waugh
Mam uczyć twierdzenia Frisha Waugha w ekonometrii, której nie studiowałem. Zrozumiałem matematykę, która się za tym kryje, i mam nadzieję, że pomysł „współczynnik, który otrzymujesz dla określonego współczynnika z wielokrotnego modelu liniowego, jest równy współczynnikowi prostego modelu regresji, jeśli„ wyeliminujesz ”wpływ innych regresorów”. Więc teoretyczny pomysł jest całkiem fajny. (Jeśli …

2
Funkcje wpływu i OLS
Próbuję zrozumieć, jak działają funkcje wpływu. Czy ktoś mógłby wyjaśnić w kontekście prostej regresji OLS yi=α+β⋅xi+εiyi=α+β⋅xi+εi\begin{equation} y_i = \alpha + \beta \cdot x_i + \varepsilon_i \end{equation} gdzie chcę funkcję wpływu dla .ββ\beta

4
Dlaczego
Uwaga: = suma kwadratów ogółem, = suma kwadratów błędów, a = regresja suma kwadratów. Równanie w tytule jest często zapisywane jako:SSTSSTSSTSSESSESSESSRSSRSSR ∑i=1n(yi−y¯)2=∑i=1n(yi−y^i)2+∑i=1n(y^i−y¯)2∑i=1n(yi−y¯)2=∑i=1n(yi−y^i)2+∑i=1n(y^i−y¯)2\sum_{i=1}^n (y_i-\bar y)^2=\sum_{i=1}^n (y_i-\hat y_i)^2+\sum_{i=1}^n (\hat y_i-\bar y)^2 Dość proste pytanie, ale szukam intuicyjnego wyjaśnienia. Intuicyjnie wydaje mi się, że miałoby większy sens. Załóżmy na przykład, że punkt ma …

3
Założenia do uzyskania estymatora OLS
Czy ktoś może mi krótko wyjaśnić, dlaczego każde z sześciu założeń jest potrzebne do obliczenia estymatora OLS? Odkryłem tylko o wielokoliniowości - że jeśli istnieje, nie możemy odwrócić macierzy (X'X), a tym samym oszacować ogólny estymator. A co z innymi (np. Liniowość, błędy o wartości zero, itp.)?

1
R-kwadrat w odchyleniu wersetów w modelu liniowym w uogólnionym modelu liniowym?
Oto mój kontekst dla tego pytania: Z tego co mogę powiedzieć, nie możemy uruchomić zwykłej regresji metodą najmniejszych kwadratów w R, gdy używamy danych ważonych i surveypakietu. Tutaj musimy użyć svyglm(), który zamiast tego uruchamia uogólniony model liniowy (który może być tym samym? Jestem tutaj rozmyty pod względem tego, co …



3
Prosta regresja liniowa, wartości p i AIC
Zdaję sobie sprawę, że ten temat pojawiał się wiele razy wcześniej, np. Tutaj , ale wciąż nie jestem pewien, jak najlepiej zinterpretować moje wyniki regresji. Mam bardzo prosty zestaw danych, składający się z kolumny wartości x i kolumny wartości y , podzielonych na dwie grupy według lokalizacji (loc). Punkty wyglądają …

4
Jaka jest / jest „mechaniczna” różnica między wielokrotną regresją liniową z opóźnieniami i szeregami czasowymi?
Jestem absolwentem biznesu i ekonomii, który obecnie studiuje magister inżynierii danych. Podczas badania regresji liniowej (LR), a następnie analizy szeregów czasowych (TS), przyszło mi do głowy pytanie. Po co tworzyć zupełnie nową metodę, tj. Szeregi czasowe (ARIMA), zamiast stosować wielokrotną regresję liniową i dodawać do niej zmienne opóźnione (z kolejnością …

3
Wykonaj regresję liniową, ale wymusz rozwiązanie, aby przejść przez określone punkty danych
Wiem, jak wykonać regresję liniową na zbiorze punktów. To znaczy, wiem, jak dopasować wybrany wielomian do danego zestawu danych (w sensie LSE). Jednak nie wiem, jak zmusić moje rozwiązanie do przejścia przez niektóre wybrane punkty. Widziałem to już wcześniej, ale nie pamiętam, jak nazywała się ta procedura, nie mówiąc już …


3
Dlaczego istnieją duże współczynniki dla wielomianu wyższego rzędu
W książce Bishopa o uczeniu maszynowym omawia problem dopasowania krzywej funkcji wielomianu do zestawu punktów danych. Niech M będzie rzędem dopasowanego wielomianu. Tak to stwierdza Widzimy, że wraz ze wzrostem M wielkość współczynników zwykle rośnie. W szczególności dla wielomianu M = 9 współczynniki zostały precyzyjnie dostrojone do danych poprzez opracowanie …

3
Regresja liniowa: jakikolwiek nienormalny rozkład dający tożsamość OLS i MLE?
To pytanie jest inspirowane długą dyskusją w komentarzach tutaj: W jaki sposób regresja liniowa wykorzystuje rozkład normalny? W zwykłym modelu regresji liniowej, dla uproszczenia, zapisanym tutaj tylko z jednym predyktorem: gdzie są znanymi stałymi, a są zerowymi średnimi niezależnymi błędami. Jeśli dodatkowo przyjmiemy rozkład normalny dla błędów, wówczas zwykłe estymatory …

3
Dlaczego ślad
W modelu możemy oszacować przy użyciu równania normalnego :y=Xβ+ϵy=Xβ+ϵ{y} = X \beta + \epsilonββ\beta β^=(X′X)−1X′y,β^=(X′X)−1X′y,\hat{\beta} = (X'X)^{-1}X'y, i moglibyśmy dostaćy^=Xβ^.y^=Xβ^.\hat{y} = X \hat{\beta}. Wektor reszt szacowany jest przez ϵ^=y−Xβ^=(I−X(X′X)−1X′)y=Qy=Q(Xβ+ϵ)=Qϵ,ϵ^=y−Xβ^=(I−X(X′X)−1X′)y=Qy=Q(Xβ+ϵ)=Qϵ,\hat{\epsilon} = y - X \hat{\beta} = (I - X (X'X)^{-1} X') y = Q y = Q (X \beta + \epsilon) …

1
Używanie MLE vs. OLS
Kiedy lepiej jest stosować oszacowanie maksymalnego prawdopodobieństwa zamiast zwykłych najmniejszych kwadratów? Jakie są zalety i ograniczenia każdego z nich? Staram się zebrać praktyczną wiedzę na temat tego, gdzie wykorzystać każdą z nich w typowych sytuacjach.

Korzystając z naszej strony potwierdzasz, że przeczytałeś(-aś) i rozumiesz nasze zasady używania plików cookie i zasady ochrony prywatności.
Licensed under cc by-sa 3.0 with attribution required.