Nauka danych

Pytania i odpowiedzi dotyczące specjalistów ds. Danych, specjalistów od uczenia maszynowego oraz osób zainteresowanych zdobyciem wiedzy na temat tej dziedziny


7
Zorganizowane procesy czyszczenia danych
Z mojego ograniczonego wglądu w naukę danych przy użyciu R zdałem sobie sprawę, że czyszczenie złych danych jest bardzo ważną częścią przygotowywania danych do analizy. Czy są jakieś najlepsze praktyki lub procesy czyszczenia danych przed ich przetwarzaniem? Jeśli tak, to czy istnieją jakieś automatyczne lub półautomatyczne narzędzia, które wdrażają niektóre …
34 r  data-cleaning 

3
Multi GPU w kamerach
W jaki sposób można zaprogramować w bibliotece keras (lub tensorflow) szkolenie partycjonowania na wielu GPU? Powiedzmy, że jesteś w instancji Amazon ec2, która ma 8 procesorów graficznych i chciałbyś wykorzystać je wszystkie, aby trenować szybciej, ale twój kod dotyczy tylko jednego procesora lub karty graficznej.

5
Otwieranie pliku 20 GB do analizy za pomocą pand
Obecnie próbuję otworzyć plik z pandami i pytonem do celów uczenia maszynowego, idealnie byłoby dla mnie mieć je wszystkie w ramce danych. Teraz plik ma 18 GB, a moja pamięć RAM to 32 GB, ale wciąż pojawiają się błędy pamięci. Czy z twojego doświadczenia jest to możliwe? Jeśli nie, czy …

4
Intuicyjne wyjaśnienie utraty szumu (NCE)?
Czytam o NCE (forma próbkowania kandydata) z tych dwóch źródeł: Zapis Tensorflow Oryginalny papier Czy ktoś może mi pomóc w następujących kwestiach: Proste wyjaśnienie, w jaki sposób działa NCE (dla mnie powyższe było trudne do przeanalizowania i zrozumienia, więc coś intuicyjnego, które prowadzi do przedstawionej matematyki, byłoby świetne) Po punkcie …

5
Jakie są przypadki użycia dla Apache Spark vs. Hadoop
Z Hadoop 2.0 i YARN Hadoop prawdopodobnie nie jest już związany tylko rozwiązaniami zmniejszającymi mapę. Z tym postępem, jakie są przypadki użycia Apache Spark vs. Hadoop, biorąc pod uwagę, że oba siedzą na szczycie HDFS? Przeczytałem dokumentację wprowadzającą do Spark, ale jestem ciekawy, czy ktoś napotkał problem, który był bardziej …

1
Papier: jaka jest różnica między normalizacją warstw, normalizacją okresowej partii (2016) i normalizacją partii RNN (2015)?
Tak więc ostatnio jest papier do normalizacji warstw . Istnieje również jego implementacja w Keras. Ale pamiętam, że są artykuły zatytułowane Recurrent Batch Normalization (Cooijmans, 2016) i Batch Normalized Recurrent Neural Networks (Laurent, 2015). Jaka jest różnica między tymi trzema? Istnieje sekcja Powiązana praca, której nie rozumiem: Normalizacja partii została …






2
Czym jest Ground Truth
W kontekście uczenia maszynowego widziałem, że termin „ Prawda naziemna” jest często używany. Dużo szukałem i znalazłem następującą definicję w Wikipedii : W uczeniu maszynowym termin „podstawowa prawda” odnosi się do dokładności klasyfikacji zestawu szkoleniowego dla nadzorowanych technik uczenia się. Jest to wykorzystywane w modelach statystycznych do udowodnienia lub obalenia …

5
Konwertuj listę list na ramkę danych Pandas
Próbuję przekonwertować listę list, która wygląda następująco na ramkę danych Pandas [['New York Yankees ', '"Acevedo Juan" ', 900000, ' Pitcher\n'], ['New York Yankees ', '"Anderson Jason"', 300000, ' Pitcher\n'], ['New York Yankees ', '"Clemens Roger" ', 10100000, ' Pitcher\n'], ['New York Yankees ', '"Contreras Jose"', 5500000, ' Pitcher\n']] Zasadniczo …
30 pandas 

1
Dlaczego xgboost jest o wiele szybszy niż sklearn GradientBoostingClassifier?
Próbuję wytrenować model zwiększania gradientu na ponad 50 tysiącach przykładów ze 100 funkcjami numerycznymi. XGBClassifierobsługuje 500 drzew w ciągu 43 sekund na mojej maszynie, a GradientBoostingClassifierobsługuje tylko 10 drzew (!) w 1 minutę i 2 sekundy :( Nie zawracałem sobie głowy próbą wyhodowania 500 drzew, ponieważ zajmie to godziny. Używam …
29 scikit-learn  xgboost  gbm  data-mining  classification  data-cleaning  machine-learning  reinforcement-learning  data-mining  bigdata  dataset  nlp  language-model  stanford-nlp  machine-learning  neural-network  deep-learning  randomized-algorithms  machine-learning  beginner  career  xgboost  loss-function  neural-network  software-recommendation  naive-bayes-classifier  classification  scikit-learn  feature-selection  r  random-forest  cross-validation  data-mining  python  scikit-learn  random-forest  churn  python  clustering  k-means  machine-learning  nlp  sentiment-analysis  machine-learning  programming  python  scikit-learn  nltk  gensim  visualization  data  csv  neural-network  deep-learning  descriptive-statistics  machine-learning  supervised-learning  text-mining  orange  data  parameter-estimation  python  pandas  scraping  r  clustering  k-means  unsupervised-learning 

Korzystając z naszej strony potwierdzasz, że przeczytałeś(-aś) i rozumiesz nasze zasady używania plików cookie i zasady ochrony prywatności.
Licensed under cc by-sa 3.0 with attribution required.