Pytania otagowane jako randomized-algorithms

1
Dlaczego xgboost jest o wiele szybszy niż sklearn GradientBoostingClassifier?
Próbuję wytrenować model zwiększania gradientu na ponad 50 tysiącach przykładów ze 100 funkcjami numerycznymi. XGBClassifierobsługuje 500 drzew w ciągu 43 sekund na mojej maszynie, a GradientBoostingClassifierobsługuje tylko 10 drzew (!) w 1 minutę i 2 sekundy :( Nie zawracałem sobie głowy próbą wyhodowania 500 drzew, ponieważ zajmie to godziny. Używam …
29 scikit-learn  xgboost  gbm  data-mining  classification  data-cleaning  machine-learning  reinforcement-learning  data-mining  bigdata  dataset  nlp  language-model  stanford-nlp  machine-learning  neural-network  deep-learning  randomized-algorithms  machine-learning  beginner  career  xgboost  loss-function  neural-network  software-recommendation  naive-bayes-classifier  classification  scikit-learn  feature-selection  r  random-forest  cross-validation  data-mining  python  scikit-learn  random-forest  churn  python  clustering  k-means  machine-learning  nlp  sentiment-analysis  machine-learning  programming  python  scikit-learn  nltk  gensim  visualization  data  csv  neural-network  deep-learning  descriptive-statistics  machine-learning  supervised-learning  text-mining  orange  data  parameter-estimation  python  pandas  scraping  r  clustering  k-means  unsupervised-learning 


1
JAK: Inicjalizacja wagi głębokiej sieci neuronowej
Biorąc pod uwagę trudne zadanie uczenia się (np. Wysoką wymiarowość, naturalną złożoność danych), głębokie sieci neuronowe stają się trudne do wyszkolenia. Aby złagodzić wiele problemów, można: Normalizuj dane && handpick jakości wybierz inny algorytm treningowy (np. RMSprop zamiast Gradient Descent) wybierz bardziej stromy gradient funkcji kosztu (np. Cross Entropy zamiast …
Korzystając z naszej strony potwierdzasz, że przeczytałeś(-aś) i rozumiesz nasze zasady używania plików cookie i zasady ochrony prywatności.
Licensed under cc by-sa 3.0 with attribution required.