Pytania otagowane jako neural-networks

Sztuczne sieci neuronowe (ANN) to szeroka klasa modeli obliczeniowych luźno opartych na biologicznych sieciach neuronowych. Obejmują one wyprzedzające NN (w tym „głębokie” NN), splotowe NN, nawracające NN itp.


6
Optymalizator Adama z rozkładem wykładniczym
W większości kodów Tensorflow widziałem, że Adam Optimizer jest używany ze stałą szybkością uczenia się 1e-4(tj. 0,0001). Kod zwykle wygląda następująco: ...build the model... # Add the optimizer train_op = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy) # Add the ops to initialize variables. These will include # the optimizer slots added by AdamOptimizer(). init_op = …

5
Sieci neuronowe vs maszyny wektorów wspierających: czy drugi jest zdecydowanie lepszy?
Wielu autorów artykułów, które czytałem, potwierdza, że ​​SVM to doskonała technika stawienia czoła ich problemom z regresją / klasyfikacją, wiedząc, że nie mogą uzyskać podobnych wyników za pośrednictwem NN. Często porównanie to stwierdza SVM zamiast NN, Mają silną teorię założycielską Osiągnij globalne maksimum dzięki programowaniu kwadratowemu Nie ma problemu z …

2
W jaki sposób sztuczna sieć neuronowa ANN może być wykorzystywana do klastrowania bez nadzoru?
Rozumiem, w jaki sposób artificial neural network (ANN)można trenować w nadzorowany sposób, stosując propagację wsteczną, aby poprawić dopasowanie, zmniejszając błąd w prognozach. Słyszałem, że ANN można wykorzystać do nauki bez nadzoru, ale jak można tego dokonać bez jakiejś funkcji kosztowej, która poprowadziłaby etapy optymalizacji? W przypadku k-średnich lub algorytmu EM …


3
Dlaczego regresja logistyczna jest klasyfikatorem liniowym?
Skoro używamy funkcji logistycznej do przekształcania liniowej kombinacji danych wejściowych w nieliniowe dane wyjściowe, w jaki sposób regresję logistyczną można uznać za klasyfikator liniowy? Regresja liniowa jest jak sieć neuronowa bez warstwy ukrytej, więc dlaczego sieci neuronowe są uważane za klasyfikatory nieliniowe, a regresja logistyczna jest liniowa?

3
Recurrent vs Recursive Neural Networks: Które rozwiązanie jest lepsze dla NLP?
Istnieją rekurencyjne sieci neuronowe i rekurencyjne sieci neuronowe. Oba są zwykle oznaczone tym samym akronimem: RNN. Według Wikipedii , Rekurencyjne NN są w rzeczywistości Rekurencyjne NN, ale tak naprawdę nie rozumiem wyjaśnienia. Co więcej, wydaje mi się, że nie znajduję lepszego (z przykładami) dla przetwarzania w języku naturalnym. Faktem jest, …

2
Dlaczego Konwolucyjne sieci neuronowe nie używają maszyny wektorów wsparcia do klasyfikacji?
W ostatnich latach Konwolucyjne sieci neuronowe (CNN) stały się najnowocześniejszymi urządzeniami do rozpoznawania obiektów w wizji komputerowej. Zazwyczaj CNN składa się z kilku warstw splotowych, po których następują dwie w pełni połączone warstwy. Za intuicją kryje się to, że warstwy splotowe uczą się lepszej reprezentacji danych wejściowych, a następnie w …

1
Zrozumienie „prawie wszystkie lokalne minimum mają bardzo podobną wartość funkcji do globalnego optimum”
W ostatnim poście na blogu Rong Ge powiedziano, że: Uważa się, że w przypadku wielu problemów, w tym uczenia się sieci głębokich, prawie wszystkie lokalne minimum mają bardzo podobną wartość funkcji do globalnego optimum, a zatem znalezienie lokalnego minimum jest wystarczające. Skąd się bierze ta wiara?

6
Jakie są alternatywy Gradient Descent?
Zejście z gradientem ma problem z utknięciem w lokalnych minimach. Musimy uruchomić czasy wykładnicze spadku gradientu, aby znaleźć globalne minima. Czy ktoś może mi powiedzieć o jakichkolwiek alternatywach gradientu zejścia stosowanych w uczeniu się sieci neuronowej, a także o ich zaletach i wadach.

1
Różnica między GradientDescentOptimizer a AdamOptimizer (TensorFlow)?
Napisałem prosty MLP w TensorFlow, który modeluje bramę XOR . Więc dla: input_data = [[0., 0.], [0., 1.], [1., 0.], [1., 1.]] powinien produkować: output_data = [[0.], [1.], [1.], [0.]] Sieć ma warstwę wejściową, warstwę ukrytą i warstwę wyjściową z 2, 5 i 1 neuronem. Obecnie mam następującą entropię krzyżową: …

1
Jak działa metoda Adama stochastycznego spadku gradientu?
Jestem zaznajomiony z podstawowymi algorytmami spadku gradientu do szkolenia sieci neuronowych. Czytałem artykuł proponujący Adam: ADAM: METODA OPTYMALIZACJI STOCHASTYCZNEJ . Chociaż zdecydowanie mam pewne spostrzeżenia (przynajmniej), papier wydaje się być dla mnie ogólnie za wysoki. Na przykład funkcja kosztu jest często sumą wielu różnych funkcji, dlatego w celu zoptymalizowania jej …

4
W jaki sposób jądra są stosowane do map obiektów w celu tworzenia innych map obiektów?
Próbuję zrozumieć część splotową sieci neuronowych splotowych. Patrząc na następujący rysunek: Nie mam problemów ze zrozumieniem pierwszej warstwy splotu, w której mamy 4 różne jądra (o wielkości ), które splatamy z obrazem wejściowym, aby uzyskać 4 mapy cech.k × kk×kk \times k To, czego nie rozumiem, to kolejna warstwa splotu, …

4
Która funkcja aktywacji dla warstwy wyjściowej?
Chociaż wybór funkcji aktywacji dla ukrytej warstwy jest dość jasny (głównie sigmoid lub tanh), zastanawiam się, jak zdecydować o funkcji aktywacji dla warstwy wyjściowej. Często wybierane są funkcje liniowe, funkcje sigmoidalne i funkcje softmax. Kiedy jednak powinienem użyć tego?

7
Referencje sieci neuronowej (podręczniki, kursy online) dla początkujących
Chcę nauczyć się sieci neuronowych. Jestem lingwistą komputerowym. Znam statystyczne metody uczenia maszynowego i potrafię kodować w Pythonie. Chciałbym zacząć od jego koncepcji i znam jeden lub dwa popularne modele, które mogą być przydatne z perspektywy językoznawstwa komputerowego. Przeglądałem sieć w celach informacyjnych i znalazłem kilka książek i materiałów. Ripley, …

Korzystając z naszej strony potwierdzasz, że przeczytałeś(-aś) i rozumiesz nasze zasady używania plików cookie i zasady ochrony prywatności.
Licensed under cc by-sa 3.0 with attribution required.